Seed vigor and assessment for heat tolerance in different Chinese flowering cabbage cultivars

2014 ◽  
Vol 39 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Guang-guang LI ◽  
Hong-di HUANG ◽  
Hua ZHANG ◽  
Yan-song ZHENG
Keyword(s):  
2014 ◽  
Vol 2 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Mercedes Florez ◽  
Elvira Martinez ◽  
Victoria Carbonell

The main objective of this study is to determine the effects of 125 mT and 250mT magnetic treatment on the germination and initial growth of triticale seeds. This objective has a practical application in agriculture science: early growth of triticale. An increase in the percentage and rate of germination of seeds and a stimulation of growth of seedlings as positive response to magnetic field treatment in rice, wheat, maize and barley seeds have been found in previous studies. Germination tests were carried out under laboratory conditions by exposing triticale seeds to magnetic field for different times. The effect was studied by exposure of seeds prior sowing. The mean germination time were reduced for all the magnetic treatments applied. Most significant differences were obtained for time of exposure of 1 and 24 hours and maximum reductions was 12%. Furthermore, seedlings from magnetically treated seeds grew taller than control. The longest mean total length was obtained from seedlings exposed to 125 and 250 mT for 24 hours. External magnetic fields are assumed to enhance seed vigor by influencing the biochemical processes by stimulating activity of proteins and enzymes. Numerous studies suggested that magnetic field increases ions uptake and consequently improves nutrition value.


1953 ◽  
Vol 12 (4) ◽  
pp. 757-764 ◽  
Author(s):  
R. E. McDowell ◽  
C. A. Matthews ◽  
Douglas H. K. Lee ◽  
M. H. Fohrman

Tsitologiya ◽  
2018 ◽  
Vol 60 (2) ◽  
pp. 128-135 ◽  
Author(s):  
L. M. Babenko ◽  
◽  
N. N. Scherbatiuk ◽  
D. A. Klimchuk ◽  
I. V. Kosakovskaya ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447f-448
Author(s):  
Millie S. Williams ◽  
Terri Woods Starman ◽  
James E. Faust

Flower growers experience decreased consumer satisfaction with plant species that cease flowering during the summer. The objective of this experiment was to characterize the heat tolerance of four specialty floral crop species in order to predict their summer performance in the different climatalogical regions of the United States. The effect of increasing temperatures on the duration of postharvest flower development was determined for Ageranthemum frutescens `Butterfly' and `Sugar Baby', Brachycome hybrid `Ultra', and Sutera cordata `Snowflake'. Plants were grown in a 18 °C greenhouse until marketable with foliage covering the container and flowers distributed evenly across the plant canopy. Plants were then placed in a phytotron to determine their heat tolerance. Temperature set points of 18, 23, 28, and 33 °C were delivered serially at 2-week intervals, starting at 18 °C. Plants were then returned to 18 °C after the 33 °C treatment. Immature flower bud, mature flower bud, flower and senesced flower numbers were collected once per week. Sutera `Snowflake', and Brachycome `Ultra' had the greatest flower number at the 23 °C temperature, decreasing in the 28 °C environment. Argeranthemum `Butterfly' and `Sugar Baby' had greatest flower number at 28 °C, but flowers were smaller and of lower quality than at 23 °C. Flower development of all cultivars ceased at 33 °C, but when plants were returned to the 18 °C production greenhouse, flower development resumed. According to normal average daily temperatures in Knoxville, Tenn., Ageranthemum frutescens `Butterfly' and `Sugar Baby' would flower until mid-June, while Brachycome hybrid `Ultra' and Sutera cordata `Snowflake' would flower until mid-May.


Sign in / Sign up

Export Citation Format

Share Document