exertional heat illness
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 48)

H-INDEX

18
(FIVE YEARS 3)

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1286
Author(s):  
Daniel Rojas-Valverde ◽  
Pablo Tomás-Carús ◽  
Rafael Timón ◽  
Nuno Batalha ◽  
Braulio Sánchez-Ureña ◽  
...  

Background: Body temperature is often assessed in the core and the skin. Infrared thermography has been used to measure skin temperature (Tsk) in sport research and clinical practice. This study aimed to explore the information reported to date on the use of infrared thermography to detect short-term Tsk responses to endurance exercise and to identify the methodological considerations and knowledge gaps, and propose future directions. Method: A web search (PubMed, Science Direct, Google Scholar, and Web of Science) was conducted following systematic review guidelines, and 45 out of 2921 studies met the inclusion criteria (endurance sports, since 2000, English, full text available). Results: A total of 45 publications were extracted, in which most of the sample were runners (n = 457, 57.9%). Several differences between IRT imaging protocols and ROI selection could lead to potential heterogeneity of interpretations. These particularities in the methodology of the studies extracted are widely discussed in this systematic review. Conclusions: More analyses should be made considering different sports, exercise stimuli and intensities, especially using follow-up designs. Study-derived data could clarify the underlying thermo physiological processes and assess whether Tsk could be used a reliable proxy to describe live thermal regulation in endurance athletes and reduce their risk of exertional heat illness/stroke. Also more in-depth analyses may elucidate the Tsk interactions with other tissues during exercise-related responses, such as inflammation, damage, or pain.


Author(s):  
Haven Guyer ◽  
Matei Georgescu ◽  
David M Hondula ◽  
Floris Wardenaar ◽  
Jennifer Vanos

Abstract Exertional heat illness and stroke are serious concerns across youth and college sports programs. While some teams and governing bodies have adopted the wet bulb globe temperature (WBGT), few practitioners use measurements on the field of play; rather, they often rely on regionally modeled or estimated WBGT. However, urban development-induced heat and projected climate change increase exposure to heat. We examined WBGT levels between various athletic surfaces and regional weather stations under current and projected climates and in hot-humid and hot-dry weather regimes in the southwest U.S. in Tempe, Arizona. On-site sun-exposed WBGT data across five days (07:00–19:00 local time) in June (dry) and August (humid) were collected over five athletic surfaces: rubber, artificial turf, clay, grass, and asphalt. Weather stations data were used to estimate regional WBGT (via the Liljegren model) and compared to on-site, observed WBGT. Finally, projected changes to WBGT were modeled under mid-century and late-century conditions. On-field WBGT observations were, on average, significantly higher than WBGT estimated from regional weather stations by 2.4°C–2.5°C, with mean on-field WBGT across both months of 28.52.76°C (versus 25.83.21°C regionally). However, between-athletic surface WBGT differences were largely insignificant. Significantly higher mean WBGTs occurred in August (30.12.35°C) versus June (26.92.19°C) across all venues; August conditions reached ‘limit activity’ or ‘cancellation’ thresholds for 6–8 hours and 2–4 hours of the day, respectively, for all sports venues. Climate projections show increased WBGTs across measurement locations, dependent on projection and period, with average August WBGT under the highest representative concentration pathway causing all-day activity cancellations. Practitioners are encouraged to use WBGT devices within the vicinity of the fields of play, yet should not rely on weather station estimations without corrections used. Heat concerns are expected to increase in the future, underlining the need for athlete monitoring, local cooling design strategies, and heat adaptation for safety.


2021 ◽  
Vol 20 (9) ◽  
pp. 470-484
Author(s):  
William O. Roberts ◽  
Lawrence E. Armstrong ◽  
Michael N. Sawka ◽  
Susan W. Yeargin ◽  
Yuval Heled ◽  
...  

2021 ◽  
Vol 53 (8S) ◽  
pp. 220-220
Author(s):  
Samantha E. Scarneo-Miller ◽  
Adrian Boltz ◽  
Avinash Chandran ◽  
Andrew E. Lincoln ◽  
Hannah Robison ◽  
...  

2021 ◽  
pp. bmjmilitary-2021-001875
Author(s):  
Carol House ◽  
M Stacey ◽  
D Woods ◽  
A Allsopp ◽  
D Roiz de Sa

IntroductionThe UK military operates a Heat Illness Clinic (HIC) to aid the return to exercise, training and occupational duty recommendations for individuals who have suffered exertional heat illness or heatstroke. This paper describes the process of assessment and reports representative data from n=22 patients referred to the HIC.MethodThe assessment included clinical consultation, and measurement of maximal oxygen consumption (V̇O2max) and a heat tolerance test (HTT) conducted on a treadmill in an environmental chamber with an air temperature of 34°C and 44% relative humidity. Patients began the HTT wearing military clothing, carrying a rucksack (mass 15 kg) and walking at 60% V̇O2max, at 30 min the rucksack and jacket were removed and the T-shirt at 45 min, individuals continued walking for 60–90 min. Patients were considered heat tolerant if rectal temperature achieved a plateau.ResultsN=14 patients were heat tolerant on the first assessment and of the n=8 patients required to return for repeat assessment, five were heat tolerant on the second assessment and the remaining three on the third assessment.ConclusionsIn conjunction with patient history and clinical evaluation, the HTT provides a physiological basis to assist with decisions concerning patient management and return to duty following an episode of heat illness.


Author(s):  
Andrew P. Hunt ◽  
Adam W. Potter ◽  
Denise M. Linnane ◽  
Xiaojiang Xu ◽  
Mark J. Patterson ◽  
...  

Objective The aim of this study was to model the effect of body armor coverage on body core temperature elevation and wet-bulb globe temperature (WBGT) offset. Background Heat stress is a critical factor influencing the health and safety of military populations. Work duration limits can be imposed to mitigate the risk of exertional heat illness and are derived based on the environmental conditions (WBGT). Traditionally a 3°C offset to WBGT is recommended when wearing body armor; however, modern body armor systems provide a range of coverage options, which may influence thermal strain imposed on the wearer. Method The biophysical properties of four military clothing ensembles of increasing ballistic protection coverage were measured on a heated sweating manikin in accordance with standard international criteria. Body core temperature elevation during light, moderate, and heavy work was modeled in environmental conditions from 16°C to 34°C WBGT using the heat strain decision aid. Results Increasing ballistic protection resulted in shorter work durations to reach a critical core temperature limit of 38.5°C. Environmental conditions, armor coverage, and work intensity had a significant influence on WBGT offset. Conclusion Contrary to the traditional recommendation, the required WBGT offset was >3°C in temperate conditions (<27°C WBGT), particularly for moderate and heavy work. In contrast, a lower WBGT offset could be applied during light work and moderate work in low levels of coverage. Application Correct WBGT offsets are important for enabling adequate risk management strategies for mitigating risks of exertional heat illness.


2021 ◽  
Vol 56 (4) ◽  
pp. 352-361
Author(s):  
William M. Adams ◽  
Yuri Hosokawa ◽  
Douglas J. Casa ◽  
Julien D. Périard ◽  
Sebastien Racinais ◽  
...  

Objective To provide best-practice recommendations for developing and implementing heat-acclimatization strategies in secondary school athletics. Data Sources An extensive literature review on topics related to heat acclimatization and heat acclimation was conducted by a group of content experts. Using the Delphi method, action-oriented recommendations were developed. Conclusions A period of heat acclimatization consisting of ≥14 consecutive days should be implemented at the start of fall preseason training or practices for all secondary school athletes to mitigate the risk of exertional heat illness. The heat-acclimatization guidelines should outline specific actions for secondary school athletics personnel to use, including the duration of training, the number of training sessions permitted per day, and adequate rest periods in a cool environment. Further, these guidelines should include sport-specific and athlete-specific recommendations, such as phasing in protective equipment and reintroducing heat acclimatization after periods of inactivity. Heat-acclimatization guidelines should be clearly detailed in the secondary school's policy and procedures manual and disseminated to all stakeholders. Heat-acclimatization guidelines, when used in conjunction with current best practices surrounding the prevention, management, and care of secondary school student-athletes with exertional heat stroke, will optimize their health and safety.


Sign in / Sign up

Export Citation Format

Share Document