Changes of Pigments in Sabina przewalskii and Picea crassifolia Needles Along with Different Altitudes

2013 ◽  
Vol 47 (4) ◽  
pp. 405-412
Author(s):  
Wen Longying ◽  
Chen Tuo
Trees ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 455-465 ◽  
Author(s):  
Lingnan Zhang ◽  
Yuan Jiang ◽  
Shoudong Zhao ◽  
Xinyu Kang ◽  
Wentao Zhang ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 682
Author(s):  
Huawei Hu ◽  
Yanqiang Wei ◽  
Wenying Wang ◽  
Chunya Wang

The Qinghai–Tibetan Plateau (QTP) with high altitude and low temperature is one of the most sensitive areas to climate change and has recently experienced continuous warming. The species distribution on the QTP has undergone significant changes especially an upward shift with global warming in the past decades. In this study, two dominant trees (Picea crassifolia Kom and Sabina przewalskii Kom) and one dominant shrub (Potentilla parvifolia Fisch) were selected and their potential distributions using the MaxEnt model during three periods (current, the 2050s and the 2070s) were predicted. The predictions were based on four shared socio-economic pathway (SSPs) scenarios, namely, SSP2.6, SSP4.5, SSP7.0, SSP8.5. The predicted current potential distribution of three species was basically located in the northeastern of QTP, and the distribution of three species was most impacted by aspect, elevation, temperature seasonality, annual precipitation, precipitation of driest month, Subsoil CEC (clay), Subsoil bulk density and Subsoil CEC (soil). There were significant differences in the potential distribution of three species under four climate scenarios in the 2050s and 2070s including expanding, shifting, and shrinking. The total suitable habitat for Picea crassifolia shrank under SSP2.6, SSP4.5, SSP7.0 and enlarged under SSP8.5 in the 2070s. On the contrary, the total suitable habitat for Sabina przewalskii enlarged under SSP2.6, SSP4.5, SSP7.0 and shrank under SSP8.5 in the 2070s. The total suitable habitat for Potentilla parvifolia continued to increase with SSP2.6 to SSP8.5 in the 2070s. The average elevation in potentially suitable habitat for Potentilla parvifolia all increased except under SSP8.5 in the 2050s. Our study provides an important reference for the conservation of Picea crassifolia, Sabina przewalskii, Potentilla parvifolia and other dominant plant species on the QTP under future climate change.


2020 ◽  
Author(s):  
Wenzhi Wang ◽  
Nate G McDowell ◽  
Xiaohong Liu ◽  
Guobao Xu ◽  
Guoju Wu ◽  
...  

Abstract Rising atmospheric CO2 may enhance tree growth and mitigate drought impacts through CO2 fertilization. However, multiple studies globally have found that rising CO2 has not translated into greater tree growth despite increases in intrinsic water use efficiency (iWUE). The underlying mechanism discriminating between these two general responses to CO2 fertilization remains unclear. We used two species with contrasting stomatal regulation, the relatively anisohydric Qilian juniper (Sabina przewalskii) and relatively isohydric Qinghai spruce (Picea crassifolia), to investigate the long-term tree growth and iWUE responses to climate change and elevated CO2 using tree-ring widths and the associated cellulose stable carbon isotope ratios (δ13C). We observed a contrasting growth trend of spruce and juniper, with juniper growth increasing while spruce growth declined. The iWUE of both species increased significantly and with similar amplitude throughout the trees’ lifespan, though the relatively anisohydric juniper had higher iWUE than the relatively isohydric spruce throughout the period. Additionally, with rising CO2, the anisohydric juniper became less sensitive to drought, while the relatively isohydric spruce became more sensitive to drought. We hypothesized that rising CO2 benefits relatively anisohydric species more than relatively isohydric species due to greater opportunity to acquire carbon through photosynthesis despite warming and droughts. Our findings suggest the CO2 fertilization effect depends on the isohydric degree, which could be considered in future terrestrial ecosystem models.


Trees ◽  
2003 ◽  
Vol 17 (3) ◽  
pp. 258-262 ◽  
Author(s):  
Wei-ya Qiang ◽  
Xun-ling Wang ◽  
Tuo Chen ◽  
Hu-yuan Feng ◽  
Li-zhe An ◽  
...  

2013 ◽  
Vol 38 (1) ◽  
pp. 22-26
Author(s):  
Yong-xia YANG ◽  
Bing-jin SHI ◽  
Xiao-long WANG ◽  
Qi FENG ◽  
Song-tao ZHANG ◽  
...  

1998 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Peter Raben ◽  
Wilfred H. Theakstone

Marked vertical variations of ions and oxygen isotopes were present in the snowpack at the glacier Austre Okstindbreen during the pre-melting phase in 1995 at sites between 825 m and 1,470 m above sea level. As the first meltwater percolated from the top of the pack, ions were moved to a greater depth, but the isotopic composition remained relatively unchanged. Ions continued to move downwards through the pack during the melting phase, even when there was little surface melting and no addition of liquid precipitation. The at-a-depth correlation between ionic concentrations and isotopic ratios, strong in the pre-melting phase, weakened during melting. In August, concentrations of Na+ and Mg2+ ions in the residual pack were low and vertical variations were slight; 18O enrichment had occurred. The difference of the time at which melting of the snowpack starts at different altitudes influences the input of ions and isotopes to the underlying glacier.


Sign in / Sign up

Export Citation Format

Share Document