starch biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 72)

H-INDEX

40
(FIVE YEARS 6)

2021 ◽  
Vol 22 (24) ◽  
pp. 13506
Author(s):  
Peng Wu ◽  
Ailian Liu ◽  
Yongyan Zhang ◽  
Kai Feng ◽  
Shuping Zhao ◽  
...  

Starch is an important component in lotus. ABA is an important plant hormone, which plays a very crucial role in regulating plant starch synthesis. Using ‘MRH’ as experimental materials, the leaves were sprayed with exogenous ABA before the rhizome expansion. The results showed that stomatal conductance and transpiration rate decreased while net photosynthetic rate increased. The total starch content of the underground rhizome of lotus increased significantly. Meanwhile, qPCR results showed that the relative expression levels of NnSS1, NnSBE1 and NnABI4 were all upregulated after ABA treatment. Then, yeast one-hybrid and dual luciferase assay suggested that NnABI4 protein can promote the expression of NnSS1 by directly binding to its promoter. In addition, subcellular localization results showed that NnABI4 encodes a nuclear protein, and NnSS1 protein was located in the chloroplast. Finally, these results indicate that ABA induced the upregulated expression of NnABI4, and NnABI4 promoted the expression of NnSS1 and thus enhanced starch accumulation in lotus rhizomes. This will provide a theoretical basis for studying the molecular mechanism of ABA regulating starch synthesis in plant.


2021 ◽  
pp. 165-185
Author(s):  
Pravat K. Mohapatra ◽  
Binod Bihari Sahu
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7092
Author(s):  
Ruiqing Li ◽  
Yuanyuan Tan ◽  
Huali Zhang

Starch is the main food source for human beings and livestock all over the world, and it is also the raw material for production of industrial alcohol and biofuel. A considerable part of the world’s annual starch production comes from crops and their seeds. With the increasing demand for starch from food and non-food industries and the growing loss of arable land due to urbanization, understanding starch biosynthesis and its regulators is essential to produce the desirable traits as well as more and better polymers via biotechnological approaches in cereal crops. Because of the complexity and flexibility of carbon allocation in the formation of endosperm starch, cereal crops require a broad range of enzymes and one matching network of regulators to control the providential functioning of these starch biosynthetic enzymes. Here, we comprehensively summarize the current knowledge about regulatory factors of starch biosynthesis in cereal crops, with an emphasis on the transcription factors that directly regulate starch biosynthesis. This review will provide new insights for the manipulation of bioengineering and starch biosynthesis to improve starch yields or qualities in our diets and in industry.


2021 ◽  
Author(s):  
Zhengdan Wu ◽  
Zhiqian Wang ◽  
Kai Zhang

Abstract Sweet potato (Ipomoea batatas (L.) Lam.) is a good source of carbohydrates, an excellent raw material for starch-based industries, and a strong candidate for biofuel production due to its high starch content. However, the molecular basis of starch biosynthesis and accumulation in sweet potato is still insufficiently understood. Glucose-6-phosphate/phosphate translocators (GPTs) mediate the import of glucose-6-phosphate (Glc6P) into plastids for starch synthesis. Here, we report the isolation of a GPT-encoding gene, IbG6PPT1, from sweet potato and the identification of two additional IbG6PPT1 gene copies in the sweet potato genome. IbG6PPT1 encodes a chloroplast membrane–localized GPT belonging to the GPT1 group and highly expressed in storage root of sweet potato. Heterologous expression of IbG6PPT1 resulted in increased starch content in the leaves, root tips, and seeds and soluble sugar in seeds of Arabidopsis thaliana, but a reduction in soluble sugar in the leaves. These findings suggested that IbG6PPT1 might play a critical role in carbohydrate accumulation in storage tissues and would be a good candidate gene for controlling critical starch properties in sweet potato.


2021 ◽  
Vol 22 (19) ◽  
pp. 10450
Author(s):  
Noman Shoaib ◽  
Lun Liu ◽  
Asif Ali ◽  
Nishbah Mughal ◽  
Guowu Yu ◽  
...  

Starch phosphorylase is a member of the GT35-glycogen-phosphorylase superfamily. Glycogen phosphorylases have been researched in animals thoroughly when compared to plants. Genetic evidence signifies the integral role of plastidial starch phosphorylase (PHO1) in starch biosynthesis in model plants. The counterpart of PHO1 is PHO2, which specifically resides in cytosol and is reported to lack L80 peptide in the middle region of proteins as seen in animal and maltodextrin forms of phosphorylases. The function of this extra peptide varies among species and ranges from the substrate of proteasomes to modulate the degradation of PHO1 in Solanum tuberosum to a non-significant effect on biochemical activity in Oryza sativa and Hordeum vulgare. Various regulatory functions, e.g., phosphorylation, protein–protein interactions, and redox modulation, have been reported to affect the starch phosphorylase functions in higher plants. This review outlines the current findings on the regulation of starch phosphorylase genes and proteins with their possible role in the starch biosynthesis pathway. We highlight the gaps in present studies and elaborate on the molecular mechanisms of phosphorylase in starch metabolism. Moreover, we explore the possible role of PHO1 in crop improvement.


2021 ◽  
Author(s):  
Zhiming Chen ◽  
Yongsheng Wang ◽  
Rongyu Huang ◽  
Zesen Zhang ◽  
Jinpeng Huang ◽  
...  

Abstract Background: The normal metabolism of transitory starch in leaves plays an important role in ensuring photosynthesis, delaying senescence and maintaining high yield in crops. OsCKI1 (casein kinase I1) plays crucial regulatory roles in multiple important physiological processes, including root development, hormonal signaling and low temperature-treatment adaptive growth in rice; however, its potential role in regulating temporary starch metabolism or premature leaf senescence remains unclear. To reveal the molecular regulatory mechanism of OsCKI1 in rice leaves, physiological, transcriptomic and proteomic analyses of leaves of the mutant lses1 (leaf starch excess and senescence 1), allelic to osckI1, and its wild-type variety (WT) were performed. Results: Phenotypic identification and physiological measurements showed that the lses1 mutant exhibited starch excess in the leaves and an obvious leaf tip withering phenotype as well as high ROS and MDA contents, low chlorophyll content and protective enzyme activities compared to WT. Transcriptomic and proteomic analyses showed that the correlations of most genes at the transcription and translation levels were limited. However, the changes of several important genes related to carbohydrate metabolism and apoptosis at the mRNA and protein levels were consistent. The protein-protein interaction (PPI) network might play accessory roles in promoting premature senescence of lses1 leaves. Comprehensive transcriptomic and proteomic analysis indicated that multiple key genes/proteins related to starch and sugar metabolism, apoptosis and ABA signaling exhibited significant differential expression. Abnormal increase in temporary starch was highly correlated with the expression of starch biosynthesis-related genes, which might be the main factor that causes premature leaf senescence and changes in multiple metabolic levels in leaves of lses1. In addition, significant up regulation of four proteins associated with ABA accumulation and signaling were detected in the lses1 mutant, suggesting that ABA may involve in multiple metabolic regulation via LSES1/OsCKI1 and the formation of mutant phenotype in lses1 leaves.Conclusion: The current study established the high correlation between the changes in physiological characteristics and mRNA and protein expression profiles in lses1 leaves, and emphasized the positive effect of excessive starch on accelerating premature leaf senescence. The expression patterns of genes/proteins related to starch biosynthesis and ABA signaling were analyzed via transcriptomes and proteomes, which provided a novel direction and research basis for the subsequent exploration of the regulation mechanism of temporary starch and apoptosis via LSES1/OsCKI1 in rice.


2021 ◽  
pp. 100237
Author(s):  
Lichun Huang ◽  
Hongyan Tan ◽  
Changquan Zhang ◽  
Qianfeng Li ◽  
Qiaoquan Liu
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Afsana Parveen ◽  
Mohammed Saba Rahim ◽  
Ankita Sharma ◽  
Ankita Mishra ◽  
Prashant Kumar ◽  
...  

AbstractIn ubiquitin-mediated post-translational modifications, RING finger families are emerged as important E3 ligases in regulating biological processes. Amylose and amylopectin are two major constituents of starch in wheat seed endosperm. Studies have been found the beneficial effects of high amylose or resistant starch on health. The ubiquitin-mediated post-translational regulation of key enzymes for amylose/amylopectin biosynthesis (GBSSI and SBEII) is still unknown. In this study, the genome-wide analysis identified 1272 RING domains in 1255 proteins in wheat, which is not reported earlier. The identified RING domains classified into four groups—RING-H2, RING-HC, RING-v, RING-G, based on the amino acid residues (Cys, His) at metal ligand positions and the number of residues between them with the predominance of RING-H2 type. A total of 1238 RING protein genes were found to be distributed across all 21 wheat chromosomes. Among them, 1080 RING protein genes were identified to show whole genome/segmental duplication within the hexaploid wheat genome. In silico expression analysis using transcriptome data revealed 698 RING protein genes, having a possible role in seed development. Based on differential gene expression and correlation analysis of 36 RING protein genes in diverse (high and low) amylose mutants and parent, 10 potential RING protein genes found to be involved in high amylose biosynthesis and significantly associated with two starch biosynthesis genes; GBSSI and SBEIIa. Characterization of mutant lines using next-generation sequencing method identified unique mutations in 698 RING protein genes. This study signifies the putative role of RING-type E3 ligases in amylose biosynthesis and this information will be helpful for further functional validation and its role in other biological processes in wheat.


Sign in / Sign up

Export Citation Format

Share Document