dominant plant species
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 2)

Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Shaoqin Yang ◽  
Lita Yi ◽  
Nuonan Ye ◽  
Mengyuan Wu ◽  
Meihua Liu

Studies of the spatial patterns of dominant plant species may provide significant insights into processes and mechanisms that maintain stand stability. This study was performed in a permanent 1 ha plot in evergreen and deciduous broad-leaved mixed forests on Tianmu Mountain. Based on two surveys (1996 and 2012), the dynamics of the spatial distribution pattern of the dominant population ( (Blume) Oersted) and the intra- and interspecific relationships between and other dominant species populations were analyzed using Ripley’s () function. We identified the importance value of a species in a community, which is the sum of the relative density, relative frequency, and relative dominance. The drivers of spatial distribution variation and the maintenance mechanisms of the forest were discussed. The results showed that the importance value of within the community decreased over the past 16 years. The population exhibited a significantly aggregated distribution within a spatial scale of 0–25 m in 1996 whereas it changed to a random distribution at scales larger than 5.5 m in 2012. From 1996 to 2012, the spatial distribution patterns between and (Batal.) Iljinsk. and between and (Lamb.) Hook did not change significantly. In 1996, and Miq. were positively associated at the scale of 0–25 m; this relationship was strongly significant at the scale of 6–10 m. However, there was no association between the populations of two species in terms of the spatial distribution at the scale of 0–25 m in 2012. Our findings indicate that the drivers of variation in the spatial distribution of the population were intra- and interspecific mutual relationships as well the seed-spreading mechanism of this species.Cyclobalanopsis myrsinifoliaC. myrsinifoliaKrC. myrsinifoliaC. myrsinifoliaC. myrsinifoliaCyclocarya paliurusC. myrsinifoliaCunninghamia lanceolataC. myrsinifoliaDaphniphyllum macropodumC. myrsinifolia


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 682
Author(s):  
Huawei Hu ◽  
Yanqiang Wei ◽  
Wenying Wang ◽  
Chunya Wang

The Qinghai–Tibetan Plateau (QTP) with high altitude and low temperature is one of the most sensitive areas to climate change and has recently experienced continuous warming. The species distribution on the QTP has undergone significant changes especially an upward shift with global warming in the past decades. In this study, two dominant trees (Picea crassifolia Kom and Sabina przewalskii Kom) and one dominant shrub (Potentilla parvifolia Fisch) were selected and their potential distributions using the MaxEnt model during three periods (current, the 2050s and the 2070s) were predicted. The predictions were based on four shared socio-economic pathway (SSPs) scenarios, namely, SSP2.6, SSP4.5, SSP7.0, SSP8.5. The predicted current potential distribution of three species was basically located in the northeastern of QTP, and the distribution of three species was most impacted by aspect, elevation, temperature seasonality, annual precipitation, precipitation of driest month, Subsoil CEC (clay), Subsoil bulk density and Subsoil CEC (soil). There were significant differences in the potential distribution of three species under four climate scenarios in the 2050s and 2070s including expanding, shifting, and shrinking. The total suitable habitat for Picea crassifolia shrank under SSP2.6, SSP4.5, SSP7.0 and enlarged under SSP8.5 in the 2070s. On the contrary, the total suitable habitat for Sabina przewalskii enlarged under SSP2.6, SSP4.5, SSP7.0 and shrank under SSP8.5 in the 2070s. The total suitable habitat for Potentilla parvifolia continued to increase with SSP2.6 to SSP8.5 in the 2070s. The average elevation in potentially suitable habitat for Potentilla parvifolia all increased except under SSP8.5 in the 2050s. Our study provides an important reference for the conservation of Picea crassifolia, Sabina przewalskii, Potentilla parvifolia and other dominant plant species on the QTP under future climate change.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1000
Author(s):  
Tao Lang ◽  
Pingping Wei ◽  
Xiaoxia Chen ◽  
Yijian Fu ◽  
Nora Fung-yee Tam ◽  
...  

Kandelia obovata (Ko) and Aegiceras corniculatum (Ac) are common and dominant plant species in mangrove wetlands in South China, which are distributed in similar tidal zones along the coastline. The present study aimed to determine the allelopathic effects of leaf litter leachates (LLLs) from Ko and their purified condensed tannins (PCTs) on the germination and growth of Ac by mangrove microcosms. Replicate pots containing five different levels of LLLs and PCTs were separately prepared and propagules of Ac were placed in each treatment. Both LLLs and PCTs significantly inhibited the germination and growth of Ac, especially at high concentrations. The final germination rates of the roots and stems and the numbers of fine roots declined continuously, while other growth indicators, including the lengths of fine roots and nutritive roots and the biomasses of roots, stems, and leaves first increased and then decreased with increasing levels. These results indicate that LLLs from the leaf litter of Ko, in particular their PCTs, exerted an inhibition effect on propagule germination and seedling growth of Ac, and the inhibitory effects were concentration dependent. This study suggested that condensed tannins from leaf litter, acting as allelochemicals, could regulate the natural regeneration of a mangrove forest.


2021 ◽  
Author(s):  
Songbo Tang ◽  
Jianfeng Liu ◽  
Hans Lambers ◽  
Lingling Zhang ◽  
Zhanfeng Liu ◽  
...  

Author(s):  
Carlos Alberto Arnillas ◽  
Elizabeth Borer ◽  
Eric Seabloom ◽  
Juan Alberti ◽  
Selene Baez ◽  
...  

Dominant and non-dominant plants could be subject to different biotic and abiotic influences, partially because dominant plants modify the environment where non-dominant plants grow, causing an interaction asymmetry. Among other possibilities, if dominant plants compete strongly, they should deplete most resources forcing non-dominant plants into a more constrained niche space. Conversely, if dominant plants are constrained by the environment, they might not fully deplete available resources but instead ameliorate some of the environmental constraints limiting non-dominants. Hence, the nature of the interactions between the non-dominants could be modified by dominant species. However, when plant competition and environmental constraints have similar effects on dominant and non-dominant species no difference is expected. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (underdispersed), suggesting dominant species are likely organized by environmental filtering, and that non-dominant species were either randomly assembled or overdispersed. Traits showed similar trends, but insufficient data prevented further analyses. Furthermore, several lineages scattered in the phylogeny had more non-dominant species, suggesting that traits related to non-dominants are phylogenetically conserved and have evolved multiple times. We found some environmental drivers of the dominant—non-dominant disparity. Our results indicate that assembly patterns for dominants and non-dominants are different, consistent with asymmetries in assembly mechanisms. Among the different mechanisms we evaluated, the results suggest two complementary hypotheses seldom explored: (1) Non-dominant species include lineages adapted to thrive in the environment generated by the dominant species. (2) Even when dominant species reduce resources to non-dominant ones, dominant species could have a stronger effect on—at least—some non-dominants by ameliorating the impact of the environment on them, than by depleting resources and increasing the environmental stress to those non-dominants. The results show that the dominant–non-dominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.


2021 ◽  
Vol 4 ◽  
Author(s):  
Alan M. Tonin ◽  
Laís S. Lima ◽  
Paulino Bambi ◽  
Monique L. Figueiredo ◽  
Renan S. Rezende ◽  
...  

Litterfall has a large influence on carbon and nutrient cycling of ecosystems, particularly in light-limited forested streams, as most nutrients return in the form of litter. Although recent evidence points to the prevalence of seasonal litterfall in species-rich and evergreen tropical riparian forests, there is a limited understanding of how riparian plant diversity intersects with stream and riparian ecosystem functions. To explore this question, we investigate litterfall chemistry across wet and dry seasons and the congruence between litter traits and plant species composition of litterfall in the wet-dry tropics. Using generalized additive models, we observed consistent seasonal patterns of litterfall chemistry over 2 years, mostly influenced by dominant species in litterfall. While drier seasons showed litter lower in nutrients and structural compounds and higher in polyphenols, litter from wetter seasons were nutrient rich but lower in polyphenols. We also found contrasting seasonal patterns in litterfall chemistry, one showing that litterfall nutrient, structural compounds, and secondary metabolite concentrations declined in drier seasons while the other showed that mass-based litterfall inputs increased markedly in drier seasons. Our findings suggest that litterfall chemistry may be altered by shifts in the identity of dominant plant species and seasonality, possibly leading to changes in carbon and nutrient fluxes in tropical riparian ecosystems.


Author(s):  
Tao Lang ◽  
Pingping Wei ◽  
Xiaoxia Chen ◽  
Yijian Fu ◽  
Nora Fung-yee Tam ◽  
...  

Kandelia obovata (Ko) and Aegiceras corniculatum (Ac) are common and dominant plant species in mangrove wetlands in South China, and distribute in the similar tidal zones along the coastline. The present study aimed to determine the allelopathic effects of leaf litter leachates (LLLs) from Ko and their purified condensed tannins (PCTs) on the germination and growth of Ac by mangrove microcosms. Replicate pots containing five different levels of LLLs and PCTs were separately prepared and propagules of Ac were placed in each treatment. Both LLLs and PCTs significantly inhibited the germination and growth of Ac, especially in high levels. The final germination rates of roots, stems, and the number of fine roots declined continuously while other growth indicators, including the lengths of fine roots, nutritive roots, the biomasses of roots, stems, leaves, increased firstly and then decreased with increasing levels. These results indicated that LLLs from the leaf litter of Ko, in particular, their PCTs exerted an inhibition effect on propagule germination and seedling growth of Ac, and the inhibitory effects were concentration dependent. This study suggested that condensed tannins from leaf litter, acting as allelochemicals, could regulate the natural regeneration of a mangrove forest.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 949
Author(s):  
Gabriela Woźniak ◽  
Damian Chmura ◽  
Eugeniusz Małkowski ◽  
Paulina Zieleźnik-Rusinowska ◽  
Krzysztof Sitko ◽  
...  

Some sites transformed or created by humans (novel ecosystem) are different both in vegetation and ecosystems establishment and development. The unknown habitat conditions and new species composition is resulting in new abiotic and biotic systems. To improve the understanding of the process governing the relationships between the environmental factors, plant species assemblages and their arbuscular mycorrhizal fungi (AMF) inoculation were studied in chronosequence on post-coal mine heaps. We hypothesized that AMF root colonization will be dependent on the age of heap and not on the dominant plant species (vegetation type). The high frequency of mycorrhizal colonization of roots (F%) of Poa compressa- and Calamagrostis epigejos-dominated vegetation type was stated. All mycorrhizal parameters were lower in C. epigejos roots when compared to P. compressa (ranging from 60% to 90%). The highest relative mycorrhizal intensity, M%, and mean abundance of arbuscula, A%, in the roots of both examined plants were recorded in vegetation patches dominated by Daucus carota. Positive and statistically significant correlations were found between F%, M%, and A%, and lack of correlation between the heaps’ age and mycorrhizal parameters, and statistically significant correlations between A% and potassium and magnesium content were revealed. The interspecific relations in the novel ecosystems become more complex along with the increase of diversity.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. 280-283
Author(s):  
Michelle C. Mack ◽  
Xanthe J. Walker ◽  
Jill F. Johnstone ◽  
Heather D. Alexander ◽  
April M. Melvin ◽  
...  

In boreal forests, climate warming is shifting the wildfire disturbance regime to more frequent fires that burn more deeply into organic soils, releasing sequestered carbon to the atmosphere. To understand the destabilization of carbon storage, it is necessary to consider these effects in the context of long-term ecological change. In Alaskan boreal forests, we found that shifts in dominant plant species catalyzed by severe fire compensated for greater combustion of soil carbon over decadal time scales. Severe burning of organic soils shifted tree dominance from slow-growing black spruce to fast-growing deciduous broadleaf trees, resulting in a net increase in carbon storage by a factor of 5 over the disturbance cycle. Reduced fire activity in future deciduous-dominated boreal forests could increase the tenure of this carbon on the landscape, thereby mitigating the feedback to climate warming.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248619
Author(s):  
Natalio Roque Marca ◽  
Ramiro Pablo López ◽  
Kazuya Naoki

Germination and seedling establishment are two critical processes in the life cycle of plants. Seeds and seedlings must pass through a series of abiotic and biotic filters in order to recruit as members of their communities. These processes are part of the regeneration niche of the species. In arid regions, the regeneration niche is frequently associated to facilitation by shade. Facilitation is a positive interaction between plants, in which one of them acts as a benefactor (the nurse) of the other (the beneficiary). The result of this interaction can be reflected in the increased growth, survival, and/or reproduction of the beneficiary plant. In this study, we determined experimentally the effect of shade and irrigation on the germination and early survival of dominant species of a semi-arid Andean region, the Bolivian Prepuna. An experiment with Acacia feddeana, Prosopis ferox, Cercidium andicola (woody species), Parodia maassii, and Oreocereus celsianus (cactus species) was carried out at an experimental garden in La Paz, Bolivia, with a bifactorial design, considering shaded and unshaded pots, subjected to two irrigation treatments (≈50 and 80 mm of rainfall during the whole study period). Microenvironmental conditions did not affect the seed germination of the woody species. However, they showed differences in seedling survival: A. feddeana survived better under shade, whereas P. ferox and C. andicola survived better without shade. Cercidium andicola, compared to P. ferox, was more affected by shade and low irrigation. Although germination success of cacti was low, both species germinated better under shade and with high irrigation. These results showed differences in the regeneration niche of dominant species of the Prepuna which may favor their coexistence and which may be characteristic of other dry Andean regions.


Sign in / Sign up

Export Citation Format

Share Document