the qilian mountains
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 81)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 239
Author(s):  
Yongge Li ◽  
Wei Liu ◽  
Qi Feng ◽  
Meng Zhu ◽  
Linshan Yang ◽  
...  

Ecosystem services in arid inland regions are significantly affected by climate change and land use/land cover change associated with agricultural activity. However, the dynamics and relationships of ecosystem services affected by natural and anthropogenic drivers in inland regions are still less understood. In this study, the spatiotemporal patterns of ecosystem services in the Hexi Region were quantified based on multiple high-resolution datasets, the InVEST model and the Revised Wind Erosion Equation (RWEQ) model. In addition, the trade-offs and synergistic relationships among multiple ecosystem services were also explored by Pearson correlation analysis and bivariate spatial autocorrelation, and redundancy analysis (RDA) was also employed to determine the environmental drivers of these services and interactions. The results showed that most ecosystem services had a similar spatial distribution pattern with an increasing trend from northwest to southeast. Over the past 40 years, ecosystem services in the Hexi Region have improved significantly, with the water retention and soil retention increasing by 87.17 × 108 m3 and 287.84 × 108 t, respectively, and the sand fixation decreasing by 369.17 × 104 t. Among these ecosystem services, strong synergistic relationships were detected, while the trade-offs were found to be weak, and showed significant spatial heterogeneity in the Hexi Region. The spatial synergies and trade-offs in the Qilian Mountains were 1.02 and 1.37 times higher than those in the Hexi Corridor, respectively. Human activities were found to exacerbate the trade-offs between ecosystem services by increasing water consumption in the Hexi Corridor, with the exception of carbon storage. In particular, there were significant tradeoffs between food production and water retention, and between soil retention and habitat quality in the oases of the Hexi Corridor, which is affected by rapid population growth and cropland expansion. Additionally, precipitation, temperature and vegetation cover in the Qilian Mountains have increased significantly over the past four decades, and these increases significantly contributed to the enhancements in water retention, carbon storage, habitat quality, soil retention and food production. Nevertheless, the amount of sand fixation significantly decreased, and this was probably associated with the reduction in wind speed over the past four decades. Our results highlighted the importance of climate wetting and water resource management in the enhancement of ecosystem services and the mitigation of food production trade-offs for arid inland regions.


2022 ◽  
Vol 32 (1) ◽  
pp. 117-140
Author(s):  
Xingran Cai ◽  
Zhongqin Li ◽  
Chunhai Xu

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105694
Author(s):  
Yunrui Ma ◽  
Qingyu Guan ◽  
Yunfan Sun ◽  
Jun Zhang ◽  
Liqin Yang ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 5064
Author(s):  
Yanpeng Yang ◽  
Dong Yang ◽  
Xufeng Wang ◽  
Zhao Zhang ◽  
Zain Nawaz

The Qilian Mountains (QLM) are an important ecological barrier in western China. High-precision land cover data products are the basic data for accurately detecting and evaluating the ecological service functions of the QLM. In order to study the land cover in the QLM and performance of different remote sensing classification algorithms for land cover mapping based on the Google Earth Engine (GEE) cloud platform, the higher spatial resolution remote sensing images of Sentinel-1 and Sentinel-2; digital elevation data; and three remote sensing classification algorithms, including the support vector machine (SVM), the classification regression tree (CART), and the random forest (RF) algorithms, were used to perform supervised classification of Sentinel-2 images of the QLM. Furthermore, the results obtained from the classification process were compared and analyzed by using different remote sensing classification algorithms and feature-variable combinations. The results indicated that: (1) the accuracy of the classification results acquired by using different remote sensing classification algorithms were different, and the RF had the highest classification accuracy, followed by the CART and the SVM; (2) the different feature variable combinations had different effects on the overall accuracy (OA) of the classification results and the performance of the identification and classification of the different land cover types; and (3) compared with the existing land cover products for the QLM, the land cover maps obtained in this study had a higher spatial resolution and overall accuracy.


2021 ◽  
Vol 13 (24) ◽  
pp. 5046
Author(s):  
Lifeng Zhang ◽  
Haowen Yan ◽  
Lisha Qiu ◽  
Shengpeng Cao ◽  
Yi He ◽  
...  

The Qilian Mountains (QLMs), an important ecological protective barrier and major water resource connotation area in the Hexi Corridor region, have an important impact on ecological security in western China due to their ecological changes. However, most existing studies have investigated vegetation changes and their main driving forces in the QLMs on the basis of a single scale. Thus, the interactions among multiple environmental factors in the QLMs are still unclear. This study was based on normalised difference vegetation index (NDVI) data from 2000 to 2019. We systematically analysed the spatial and temporal characteristics of the QLMs at multiple time scales using trend analysis, ensemble empirical mode decomposition, Geodetector, and correlation analysis methods. At different time scales under single-factor and multi-factor interactions, we examined the mechanisms of the vegetation changes and their drivers. Our results showed that the vegetation in the QLMs showed a trend of overall improvement in 2000–2019, at a rate of 0.88 × 10−3, mainly in the central western regions. The NDVI in the QLMs showed a short change cycle of 3 and 5 years and a long-term trend. Sunshine time and wind speed were the main drivers of the vegetation variation in the QLMs, followed by temperature. Precipitation affected the vegetation spatial variation within a certain altitude range. However, temperature and precipitation had stronger explanatory powers for the vegetation variation in the western QLMs than in the eastern part. Their interaction was the dominant factor in the regional differences in vegetation. The responses of the NDVI to temperature and precipitation were stronger in the long time series. The main drivers of vegetation variation were land surface temperature and precipitation in the east and temperature and evapotranspiration in the west. Precipitation was the main driver of vegetation growth in the northern and southwestern QLMs on both the short- and long-term scales. Vegetation changes were more significantly influenced by short-term temperature changes in the east but by a combination of temperature and precipitation in most parts of the QLMs on a 5-year time scale.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1736
Author(s):  
Minfei Ma ◽  
Jianhong Liu ◽  
Mingxing Liu ◽  
Jingchao Zeng ◽  
Yuanhui Li

Obtaining accurate forest coverage of tree species is an important basis for the rational use and protection of existing forest resources. However, most current studies have mainly focused on broad tree classification, such as coniferous vs. broadleaf tree species, and a refined tree classification with tree species information is urgently needed. Although airborne LiDAR data or unmanned aerial vehicle (UAV) images can be used to acquire tree information even at the single tree level, this method will encounter great difficulties when applied to a large area. Therefore, this study takes the eastern regions of the Qilian Mountains as an example to explore the possibility of tree species classification with satellite-derived images. We used Sentinel-2 images to classify the study area’s major vegetation types, particularly four tree species, i.e., Sabina przewalskii (S.P.), Picea crassifolia (P.C.), Betula spp. (Betula), and Populus spp. (Populus). In addition to the spectral features, we also considered terrain and texture features in this classification. The results show that adding texture features can significantly increase the separation between tree species. The final classification result of all categories achieved an accuracy of 86.49% and a Kappa coefficient of 0.83. For trees, the classification accuracy was 90.31%, and their producer’s accuracy (PA) and user’s (UA) were all higher than 84.97%. We found that altitude, slope, and aspect all affected the spatial distribution of these four tree species in our study area. This study confirms the potential of Sentinel-2 images for the fine classification of tree species. Moreover, this can help monitor ecosystem biological diversity and provide references for inventory estimation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4935
Author(s):  
Zhongming Guo ◽  
Ninglian Wang ◽  
Baoshou Shen ◽  
Zhujun Gu ◽  
Yuwei Wu ◽  
...  

Glaciers in the Qilian Mountains, China, play an important role in supplying freshwater to downstream populations, maintaining ecological balance, and supporting economic development on the Tibetan Plateau. Glacier snowline altitude (SLA) at the end of the melt season is an indicator of the Equilibrium line altitude (ELA), and can be used to estimate the mass balance and climate reconstruction. Here, we employ the height zone-area method to determine the SLA at the end of the melt season during the 1989–2018 period using Landsat, MODIS (Moderate Resolution Imaging Spectroradiometer) SLA and Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data. The accuracy of glacier SLA obtained in 1989–2018 after adding MODIS SLA data to the years without Landsat data increased by about 78 m. The difference between the remote-sensing-derived SLA and measured equilibrium line altitude (ELA) is mostly within 50 m, suggesting that the SLA can serve as a proxy for the ELA at the end of the melt season. The SLA of Qiyi Glacier in the Qilian Mountains rose from 4690 ± 25 m to 5030 ± 25 m, with an average of 4900 ± 103 m during the 30 year study period. The western, central, eastern sections and the whole range of the Qilian Mountains exhibited an upward trend in SLA during the 30 year study period. The mean glacier SLAs were 4923 ± 137 m, 4864 ± 135 m, 4550 ± 149 m and 4779 ± 149 m for the western, central, eastern sections and the whole range, respectively. From the perspective of spatial distribution, regardless of the different orientation, grid scale and basin scale, the glacier SLA of Qilian Mountains showed an upward trend from 1989 to 2018, and the glacier SLA is in general located at a comparably higher altitude in the southern and western parts of the Qilian Mountains while it is located at a comparably lower altitude in its northern and eastern parts. In an ideal condition, climate sensitivity studies of ELA in Qilian Mountains show that if the summer mean temperature increases (decreases) by 1 °C, then ELA will increase (decrease) by about 102 m. If the annual total solid precipitation increases (decreases) by 10%, then the glacier ELA will decrease (rise) by about 6 m. The summer mean temperature is the main factor affecting the temporal trend of SLA, whereas both summer mean temperature and annual total precipitation influence the spatial change of SLA.


2021 ◽  
Vol 133 ◽  
pp. 108351
Author(s):  
Yuan Qi ◽  
Hongwei Wang ◽  
Xiaofang Ma ◽  
Jinlong Zhang ◽  
Rui Yang

Author(s):  
Lin Liu ◽  
Wei Song ◽  
Yanjie Zhang ◽  
Ze Han ◽  
Han Li ◽  
...  

Ecosystem restoration has been widely concerned with the damage and degradation of ecosystems worldwide. Scientific and reasonable formulations of ecological restoration zoning is the basis for the formulation of an ecological restoration plan. In this study, a restoration zoning index system was proposed to comprehensively consider the ecological problems of ecosystems. The linear weighted function method was used to construct the ecological restoration index (ERI) as an important index of zoning. The research showed that: (1) the ecological restoration zones of the Qilian Mountains can be divided into eight basins, namely the headwaters of the Datong River Basin, the Danghe-Dahaerteng River Basin, the northern confluence area of the Qinghai Lake, the upper Shule River to middle Heihe River, the Oasis Agricultural Area in the northern foothills of the Qilian Mountain, the Huangshui Basin Valley, Aksay (corridor region of the western Hexi Basin), and the northeastern Tsaidam Basin; (2) the restoration index of the eight ecological restoration zones of the Qilian Mountains was between 0.34–0.8, with an average of 0.61 (the smaller the index, the more prominent the comprehensive ecological problem representing the regional mountains, rivers, forests, cultivated lands, lakes, and grasslands, and thus the greater the need to implement comprehensive ecological protection and restoration projects); and (3) the ecological problems of different ecological zones are frequently numerous, and often show the phenomenon of multiple overlapping ecological problems in the same zone.


Sign in / Sign up

Export Citation Format

Share Document