scholarly journals Smart Building: Decision Making Architecture for Thermal Energy Management

Author(s):  
Oscar Hernández Uribe ◽  
Juan Pablo San Martin ◽  
María C Garcia-Alegre ◽  
Matilde Santos ◽  
Domingo Guinea
Sensors ◽  
2015 ◽  
Vol 15 (11) ◽  
pp. 27543-27568 ◽  
Author(s):  
Oscar Uribe ◽  
Juan Martin ◽  
María Garcia-Alegre ◽  
Matilde Santos ◽  
Domingo Guinea

Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 63-76
Author(s):  
Mengxuan Yan ◽  
Dongxiao Wang ◽  
Chun Sing Lai ◽  
Loi Lei Lai

Microgrids have become increasingly popular in recent years due to technological improvements, growing recognition of their benefits, and diminishing costs. By clustering distributed energy resources, microgrids can effectively integrate renewable energy resources in distribution networks and satisfy end-user demands, thus playing a critical role in transforming the existing power grid to a future smart grid. There are many existing research and review works on microgrids. However, the thermal energy modelling in optimal microgrid management is seldom discussed in the current literature. To address this research gap, this paper presents a detailed review on the thermal energy modelling application on the optimal energy management for microgrids. This review firstly presents microgrid characteristics. Afterwards, the existing thermal energy modeling utilized in microgrids will be discussed, including the application of a combined cooling, heating and power (CCHP) and thermal comfort model to form virtual energy storage systems. Current trial programs of thermal energy modelling for microgrid energy management are analyzed and some challenges and future research directions are discussed at the end. This paper serves as a comprehensive review to the most up-to-date thermal energy modelling applications on microgrid energy management.


2021 ◽  
Vol 22 (4) ◽  
pp. 1739-1751
Author(s):  
Hajar Maleki ◽  
Thomas Fischer ◽  
Christoph Bohr ◽  
Jaqueline Auer ◽  
Sanjay Mathur ◽  
...  

Author(s):  
Xufeng Yao ◽  
Zeyi Sun ◽  
Lin Li ◽  
Hua Shao

The expenses associated with maintenance activities and energy consumption account for a large portion of the total operation cost in manufacturing plants. Therefore, effective methods that can be used for smart maintenance decision-making and energy management to reduce the costs of these two sections and improve the competitiveness of manufacturing enterprise are of high interests to industry. Many efforts focusing on maintenance decision-making and energy management have been dedicated. However, most of the existing research focusing on these two topics has been conducted separately, very little work has been done from a joint perspective that considers the benefits from both manufacturing machine reliability improvement and energy cost reduction. In this paper, a joint maintenance and energy management method is proposed to identify the maintenance actions considering energy cost as well as other equipment health metrics. A numerical case based on a section of an automotive assembly line is used to illustrate the potential benefits of the proposed approach.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 574
Author(s):  
Muhammad Hilal Khan ◽  
Azzam Ul Asar ◽  
Nasim Ullah ◽  
Fahad R. Albogamy ◽  
Muhammad Kashif Rafique

Energy consumption in buildings is expected to increase by 40% over the next 20 years. Electricity remains the largest source of energy used by buildings, and the demand for it is growing. Building energy improvement strategies is needed to mitigate the impact of growing energy demand. Introducing a smart energy management system in buildings is an ambitious yet increasingly achievable goal that is gaining momentum across geographic regions and corporate markets in the world due to its potential in saving energy costs consumed by the buildings. This paper presents a Smart Building Energy Management system (SBEMS), which is connected to a bidirectional power network. The smart building has both thermal and electrical power loops. Renewable energy from wind and photo-voltaic, battery storage system, auxiliary boiler, a fuel cell-based combined heat and power system, heat sharing from neighboring buildings, and heat storage tank are among the main components of the smart building. A constraint optimization model has been developed for the proposed SBEMS and the state-of-the-art real coded genetic algorithm is used to solve the optimization problem. The main characteristics of the proposed SBEMS are emphasized through eight simulation cases, taking into account the various configurations of the smart building components. In addition, EV charging is also scheduled and the outcomes are compared to the unscheduled mode of charging which shows that scheduling of Electric Vehicle charging further enhances the cost-effectiveness of smart building operation.


Sign in / Sign up

Export Citation Format

Share Document