scholarly journals Novel Cell Seeding System into a Porous Scaffold Using a Modified Low-Pressure Method to Enhance Cell Seeding Efficiency and Bone Formation

2007 ◽  
Vol 16 (7) ◽  
pp. 729-739 ◽  
Author(s):  
Ichiro Torigoe ◽  
Shinichi Sotome ◽  
Akio Tsuchiya ◽  
Toshitaka Yoshii ◽  
Makoto Takahashi ◽  
...  

The efficient seeding of cells into porous scaffolds is important in bone tissue engineering techniques. To enhance efficiency, we modified the previously reported cell seeding techniques using low-pressure conditions. In this study, the effects of low pressure on bone marrow-derived stromal cells (BMSCs) of rats and the usefulness of the modified technique were assessed. There was no significant difference found in the proliferative and osteogenic capabilities among various low-pressure (50–760 mmHg, 1–10 min) conditions. To analyze the efficacies of the cell seeding techniques, BMSCs suspended in the plasma of rats were seeded into porous β-tricalcium phosphate (β-TCP) blocks by the following three procedures: 1) spontaneous penetration of cell suspension under atmospheric pressure (SP); 2) spontaneous penetration and subsequent low pressure treatment (SPSL), the conventional technique; and 3) spontaneous penetration under low pressure conditions (SPUL), the modified technique. Subsequently, these BMSCs/β-TCP composites were used for the analysis of cell seeding efficiency or in vivo bone formation capability. Both the number of BMSCs seeded into β-TCP blocks and the amount of bone formation of the SPUL group were significantly higher than those of the other groups. The SPUL method with a simple technique permits high cell seeding efficiency and is useful for bone tissue engineering using BMSCs and porous scaffolds.

2008 ◽  
Vol 14 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
Moyo Kruyt ◽  
Joost de Bruijn ◽  
Jeroen Rouwkema ◽  
Clemens van Blitterswijk ◽  
Cumhur Oner ◽  
...  

2008 ◽  
Vol 0 (0) ◽  
pp. 080509171349438
Author(s):  
Moyo Kruyt ◽  
Joost de Bruijn ◽  
Jeroen Rouwkema ◽  
Clemens van Bliterswijk ◽  
Cumhur Oner ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


2017 ◽  
Vol 62 ◽  
pp. 91-101 ◽  
Author(s):  
Anne Géraldine Guex ◽  
Jennifer L. Puetzer ◽  
Astrid Armgarth ◽  
Elena Littmann ◽  
Eleni Stavrinidou ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Seok Jang ◽  
Phonelavanh Manivong ◽  
Yu-Kyoung Kim ◽  
Kyung-Seon Kim ◽  
Sook-Jeong Lee ◽  
...  

Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material. It was confirmed that the scaffold of 40 w/v% beta-tricalcium phosphate with three coating times had optimum microstructure and mechanical properties for bone tissue engineering application. The various concentration of N-acetyl-L-cysteine was loaded on 40 w/v% beta-tricalcium phosphate scaffold. Scaffold group loaded 5 mM N-acetyl-L-cysteine showed the best viability of MC3T3-E1 preosteoblastic cells in the water-soluble tetrazolium salt assay test.


2020 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Robert Owen ◽  
Hossein Bahmaee ◽  
Frederik Claeyssens ◽  
Gwendolen C. Reilly

There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound’s action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.


Author(s):  
Huei-Yu Huang ◽  
Fang-Yu Fan ◽  
Yung-Kang Shen ◽  
Chia-Hsien Wang ◽  
Yuen-Tzu Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document