scholarly journals Knockdown of REV7 Inhibits Breast Cancer Cell Migration and Invasion

Author(s):  
Liu Feng ◽  
Wang Wei ◽  
Zhang Heng ◽  
Han Yantao ◽  
Wang Chunbo

REV7 (also known as MAD2L2) is a multifunctional protein involved in DNA damage tolerance, cell cycle regulation, gene expression, and carcinogenesis. Although its expression is reportedly associated with poor prognosis in several kinds of human cancers, the significance of REV7 expression in breast malignancies is unclear. In this study, REV7 was found to be increased in breast cancer. We found that knockdown of REV7 inhibited the migration, invasion, and epithelial‐mesenchymal transition (EMT) of breast cancer cells. Meanwhile, overexpression of REV7 promoted the migration, invasion, and EMT of breast cancer cells. As shown by Western blot, knockdown of REV7 can promote TGF-β1 expression. Western blot analysis indicated that TGF-β1 may play a role as a downstream factor of REV7. Moreover, interference of TGF-β1 can also inhibit the cell’s ability for migration, invasion, and EMT, as well as in a cell line whose REV7 is overexpressed. Taken together, these results contributed to a recognition of the oncogene functions of REV7 in breast cancer cells and provided a novel direction to treat breast cancer.

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ziqian Yan ◽  
Zhimei Sheng ◽  
Yuanhang Zheng ◽  
Ruijun Feng ◽  
Qinpei Xiao ◽  
...  

AbstractStudies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
You Wu ◽  
Wanyue Shi ◽  
Tingting Tang ◽  
Yidong Wang ◽  
Xin Yin ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2016 ◽  
Vol 118 (2) ◽  
pp. 237-251 ◽  
Author(s):  
Aldona A. Karaczyn ◽  
Tamara L. Adams ◽  
Robert Y.S. Cheng ◽  
Nicholas N. Matluk ◽  
Joseph M. Verdi

Sign in / Sign up

Export Citation Format

Share Document