slug expression
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 41)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yasemin SAYGIDEGER ◽  
Alper AVCI ◽  
Emine BAGIR ◽  
Burcu SAYGIDEĞER DEMİR ◽  
Aycan SEZAN Ms ◽  
...  

Abstract Objective: Lung cancer displays heterogeneity both in the tumor itself and in its metastatic regions. One interesting behavior of the tumor is known as Skip N2 metastasis, which N2 lymph nodes contain tumor cells while N1 are clean. In this study, mRNA levels of epithelial mesenchymal transition (EMT) related genes in skip N2 and normal N2 involvements of non-small cell lung cancer tissues were investigated to evaluate the possible molecular background that may contribute to the pathogenesis of Skip N2 metastasis. Materials and Methods: Eighty-three surgically resected and paraffin embedded lymph node samples of lung cancer patients were analyzed in this study, which 40 of them were Skip N2. N2 tissues were sampled from 50% tumor containing areas and total RNA was extracted. mRNA levels for 18S, E-cadherin, Vimentin, ZEB1 and SLUG were analyzed via qPCR and E-cadherin and vimentin protein levels via immunohistochemistry (IHC). Bioinformatic analysis were adopted using online datasets to evaluate significantly co-expressed genes with SLUG in lung cancer tissue samples.Results: Skip-N2 patients who had adenocarcinoma subtype had better survival rates. Comparative analysis of PCR results indicated that Skip N2 tumor tissues had increased E-Cadherin/Vimentin ratio and ZEB1 mRNA expression, and significantly decreased levels of SLUG. E-cadherin IHC staining were higher in Skip N2 and Vimentin were in Non-Skip N2. TP63 had a strong correlation with SLUG expression in the bioinformatics analyses.Conclusion: The results indicate that, at molecular level, Skip N2 pathogenesis has different molecular background and regulation of SLUG expression may orchestrate the process.


2021 ◽  
Author(s):  
Madoca Inukai ◽  
Ako Yokoi ◽  
Yuuki Ishizuka ◽  
Miki Hashimura ◽  
Toshihide Matsumoto ◽  
...  

Abstract Background Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM Methods We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers including hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9) in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. Results In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(-) GBM cells were recruited to the surface of host preexisting vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. Conclusion S100A4(+)/HIF-1α(-) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1900
Author(s):  
Luiz Paulo Chaves ◽  
Camila Morais Melo ◽  
Fabiano Pinto Saggioro ◽  
Rodolfo Borges dos Reis ◽  
Jeremy Andrew Squire

Prostate cancers may reactivate a latent embryonic program called the epithelial–mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.


2021 ◽  
Author(s):  
Yasemin Saygideger ◽  
Alper AVCI ◽  
Emine BAGIR ◽  
Burcu Saygıdeğer Demir ◽  
Aycan SEZAN ◽  
...  

Abstract Objective: Lung cancer displays heterogeneity both in the tumor itself and in its metastatic regions. One interesting behavior of the tumor is known as Skip N2 metastasis, which N2 lymph nodes contain tumor cells while N1 are clean. In this study, mRNA levels of epithelial mesenchymal transition (EMT) related genes in skip N2 and normal N2 involvements of non-small cell lung cancer tissues were investigated to evaluate the possible molecular background that may contribute to the pathogenesis of Skip N2 metastasis. Materials and Methods: Eighty-three surgically resected and paraffin embedded lymph node samples of lung cancer patients were analyzed in this study, which 40 of them were Skip N2. N2 tissues were sampled from 50% tumor containing areas and total RNA was extracted. mRNA levels for 18S, E-cadherin, Vimentin, ZEB1 and SLUG were analyzed via qPCR and E-cadherin and vimentin protein levels via immunohistochemistry (IHC). Bioinformatic analysis were adopted using online datasets to evaluate significantly co-expressed genes with SLUG in lung cancer tissue samples.Results: Skip-N2 patients who had adenocarcinoma subtype had better survival rates. Comparative analysis of PCR results indicated that Skip N2 tumor tissues had increased E-Cadherin/Vimentin ratio and ZEB1 mRNA expression, and significantly decreased levels of SLUG. E-cadherin IHC staining were higher in Skip N2 and Vimentin were in Non-Skip N2. TP63 had a strong correlation with SLUG expression in the bioinformatics analyses.Conclusion: The results indicate that, at molecular level, Skip N2 pathogenesis has different molecular background and regulation of SLUG expression may orchestrate the process.


2021 ◽  
Author(s):  
Zhihao Zhang ◽  
Yueyuan Wang ◽  
Xiao Xie ◽  
Jingyu Peng ◽  
Xue Wei ◽  
...  

Abstract 1.1 Background Slug as a member of the epithelial-mesenchymal transition(EMT) leads to the decrease of adhesion between cancer cells and the increase of cell migration. Many studies have been reported the relationship between prognosis and slug expression in patients with breast cancer, yet the results are controversial. Therefore, it is necessary to conclude the relationship between slug and breast cancer by a meta-analysis. 1.2 Methods We looked for studies on breast cancer and slug via PubMed, Scopus and Web of Science .A total of 1458 patients from the final eight studies were included in this meta-analysis. Overall survival (OS) and Disease-free survival (DFS) were the primary endpoints. Pooled hazard ratio (HR), pooled odds ratio (OR), and 95% confidence interval (CI) were calculated to assess the association between slug, prognosis, and clinicopathological parameters (age, tumor size, histological grade, axillary lymph nodes status(LN),TNM stage, ER(estrogen receptor) status, PR(progesterone receptor) status, HER-2(human epidermal growth factor receptor 2)status). Data analysis was carried out by using STATA version 14.0. (Stata Corporation, TX, USA)software. 1.3 Results This meta-analysis included 1458 patients from eight studies. The final results show that high slug expression leads to poor OS(pooled HR = 2.21;95%CI=1.47-3.33;p<0.001) and DFS (pooled HR = 2.03;95%CI=1.26-3.28; P=0.004) in breast cancer. In terms of clinicopathological parameters, the results show that breast cancer patients with high slug expression have higher TNM stage(I-II/III-IV; pooled OR=0.42;95%CI=0.25-0.70;P=0.001), more prone to axillary lymph node metastasis(N+/N0;pooled OR =2.16; 95%CI =1.31-3.56; P=0.003) and more severe ER deficiency (positive /negative; pooled OR=0.67;95%CI=0.45-0.99; P=0.042).However, slug is not related to age, histological grade, tumor size, PR status and Her-2 status. 1.4 Conclusion This meta-analysis results show that high slug expression in breast cancer is associated with poor OS, DFS and axillary lymph node status, TNM stage and ER status, but not related to age, histological grade, tumor size, PR status and Her-2 status.


Author(s):  
Francesco Vasuri ◽  
Sabrina Valente ◽  
Ilenia Motta ◽  
Alessio Degiovanni ◽  
Carmen Ciavarella ◽  
...  

Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed. Transmission electron microscopy (TEM) was used to describe calcification at its inception. Two hundred and fourteen femoral arteries were enrolled. The mean age of the donors was 39.9 ± 12.9 years; male gender prevailed (M: 128). Histology showed a normal architecture; calcifications were found in 52 (24.3%) cases, without correlations with cardiovascular risk factors. Calcifications were seen on or just beneath the inner elastic lamina (IEL). At IHC, SLUG was increasingly expressed in the wall of focally calcified femoral arteries (FCFA). ETS-related gene (ERG), SLUG, CD44, and SOX-9 were positive in calcifications. RT-PCR showed increased levels of BPM-2, RUNX-2, alkaline phosphatase, and osteocalcin osteogenic transcripts and increased expression of the chondrogenic marker, SOX-9, in FCFA. TEM documented osteoblast-like cells adjacent to the IEL, releasing calcifying vesicles from the cell membrane. The vesicles were embedded in a proteoglycan-rich matrix and were entrapped in IEL fenestrations. In this study, ERG- and CD44-positive cell populations were found in the context of increased SLUG expression, thus supporting the participation of EndMT in FCFA; the increased transcript expression of osteochondrogenic markers, particularly SOX-9, reinforced the view that EndMT, osteochondrogenesis, and neoangiogenesis interact in the process of arterial calcification. Given its role as a transcription factor in the regulation of endothelial homeostasis, arterial ERG expression can be a clue of endothelial dysregulation and changes in IEL organization which can ultimately hinder calcifying vesicle diffusion through the IEL fenestrae. These results may have a broader implication for understanding arterial calcification within a disease context.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Zhuoliang Zhang ◽  
Xingliang Fang ◽  
Guilin Xie ◽  
Jinlong Zhu
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanxin Miao ◽  
Weina Zhang ◽  
Su Liu ◽  
Xiangfeng Leng ◽  
Chunnan Hu ◽  
...  

AbstractHomeobox C10 (HOXC10) has been reported to participate in various cancers. However, the involvement of HOXC10 in melanoma is still unknown. Here, we attempted to determine whether HOXC10 can affect the development of melanoma. We separated melanoma tissues and the matched tumor-adjacent normal tissues from melanoma patients, and examined HOXC10 expression in the melanoma cells and tissues. Comparing with the tumor-adjacent normal tissues, HOXC10 was up-regulated in melanoma tissues. Melanoma cells also displayed an up-regulation of HOXC10. Moreover, HOXC10 inhibition suppressed cell proliferation, clone formation and promoted apoptosis of melanoma cells. Knockdown of HOXC10 also retarded migration, invasion and epithelial–mesenchymal transition (EMT) in melanoma cells. Additionally, HOXC10 accelerated Slug expression by interacting with Slug, and activating the promoter of Slug. Slug activated the YAP/TAZ signaling pathway, which was reversed by HOXC10 silencing. The in vitro assays demonstrated that inhibition of HOXC10 significantly repressed tumor growth and lung metastasis of melanoma in mice by inhibiting Slug and YAP/TAZ signaling pathway. In conclusion, this work demonstrated that HOXC10 promoted growth and migration of melanoma by regulating Slug to activate the YAP/TAZ signaling pathway. Therefore, this study suggests that inhibition of HOXC10 has therapeutic potential in melanoma.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1736
Author(s):  
Iuliu Sbiera ◽  
Stefan Kircher ◽  
Barbara Altieri ◽  
Martin Fassnacht ◽  
Matthias Kroiss ◽  
...  

A clinically relevant proportion of adrenocortical carcinoma (ACC) cases shows a tendency to metastatic spread. The objective was to determine whether the epithelial to mesenchymal transition (EMT), a mechanism associated with metastasizing in several epithelial cancers, might play a crucial role in ACC. 138 ACC, 29 adrenocortical adenomas (ACA), three normal adrenal glands (NAG), and control tissue samples were assessed for the expression of epithelial (E-cadherin and EpCAM) and mesenchymal (N-cadherin, SLUG and SNAIL) markers by immunohistochemistry. Using real-time RT-PCR we quantified the alternative isoform splicing of FGFR 2 and 3, another known indicator of EMT. We also assessed the impact of these markers on clinical outcome. Results show that both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers but strongly expressed mesenchymal markers N-cadherin and SLUG. FGFR isoform splicing confirmed higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues. In ACC, higher SLUG expression was associated with clinical markers indicating aggressiveness, while N-cadherin expression inversely associated with these markers. In conclusion, we could not find any indication of EMT as all adrenocortical tissues lacked expression of epithelial markers and exhibited closer similarity to mesenchymal tissues. However, while N-cadherin might play a positive role in tissue structure upkeep, SLUG seems to be associated with a more aggressive phenotype.


Sign in / Sign up

Export Citation Format

Share Document