PAG-Microinjected Dipyrone Prevents the Late Response of Spinal Nociceptive Neurons to Subcutaneous Formalin in Rats

Analgesia ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 405-407 ◽  
Author(s):  
Enrique Vásquez ◽  
Dilia Hernández-Matheus ◽  
Víctor Tortorici ◽  
Horacio Vanegas
Author(s):  
Timothy S. Pulverenti ◽  
Gabriel S. Trajano ◽  
Benjamin J. C. Kirk ◽  
Vanesa Bochkezanian ◽  
Anthony J. Blazevich

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaojie Liu ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
Yan Zhang ◽  
Yu Ding ◽  
...  

Abstract Background Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. Results Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Alejandro Rubio-Melgarejo ◽  
Rosendo Balois-Morales ◽  
Yolotzin Apatzingan Palomino-Hermosillo ◽  
Graciela Guadalupe López-Guzmán ◽  
José Carmen Ramírez-Ramírez ◽  
...  

This work evaluates the effect of the pathogens Colletotrichum siamense and C. gloeosporioides on the response of soursop fruits. The bioactive compounds (total phenols, flavonoids, anthraquinones, coumarins, steroids, terpenoids, alkaloids, and saponins) were evaluated qualitatively in soursop pulp. Positive phytochemicals and antioxidant activity (DPPH•, ABTS•+, and FRAP) were quantified at day zero, one, three, and five. Fruits treated with C. gloeosporioides showed higher disease severity (P<0.05). Early fruit response (day one) was observed with both pathogens, increased the concentration of saponins and repressed the production of quercetin 3-O-glucoside (P<0.05). Likewise, C. siamense decreased total soluble phenols and flavonoids and increased antiradical activity DPPH•. Besides, C. gloeosporioides decreased the levels of kaempferol 3-O-rutinoside and ferulic acid (P<0.05). Regarding the late response (day three), both pathogens decreased the concentration of saponins and increased flavonoids and phytosterols (P<0.05). Nevertheless, C. siamense increased the levels of total soluble phenols, p-coumaric acid, kaempferol, and antiradical activity FRAP (P<0.05). Also, C. gloeosporioides repressed the production of quercetin 3-O-glucoside at day five (P<0.05). Soursop fruits had a response to the attack of Colletotrichum during ripening at physicochemical and oxidative levels, which is associated with the production of compounds related to the development inhibition of pathogens. Even so, soursop fruits showed higher susceptibility to C. gloeosporioides and higher sensitivity to the attack of C. siamense.


Author(s):  
Yehong Fang ◽  
Shu Han ◽  
Xiaoxue Li ◽  
Yikuan Xie ◽  
Bing Zhu ◽  
...  

Abstract Pain on the body surface can accompany disorders in the deep tissue or internal organs. However, the anatomical and physiological mechanisms are obscure. Here, we provided direct evidence of axon bifurcation in primary C-nociceptive neurons that innervate both the skin and a visceral organ. Double-labeled dorsal root ganglion (DRG) neurons and Evans blue extravasation were observed in 3 types of chemically-induced visceral inflammation (colitis, urocystitis, and acute gastritis) rat models. In the colitis model, mechanical hypersensitivity and spontaneous activity were recorded in vivo from double-labeled C-nociceptive neurons in S1 or L6 DRGs. These neurons showed significantly enhanced responses to both somatic stimulation and colorectal distension. Our findings suggest that the branching of C-nociceptor axons contribute to cutaneous hypersensitivity in visceral inflammation. Cutaneous hypersensitivity on certain locations of the body surface might serve as an indicator of pathological conditions in the corresponding visceral organ.


2015 ◽  
Vol 13 (5) ◽  
pp. 318-326 ◽  
Author(s):  
Rachel E. Miller ◽  
Phuong B. Tran ◽  
Alia M Obeidat ◽  
Padmanabhan Raghu ◽  
Shingo Ishihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document