Examining Dimensions of Anticipation: Inputs Prior to Visiting the Ross Sea Region, Antarctica

2006 ◽  
Vol 2 (2) ◽  
pp. 51-63 ◽  
Author(s):  
Patrick T. Maher ◽  
Alison J. McIntosh ◽  
Gary D. Steel
Keyword(s):  
2020 ◽  
Vol 636 ◽  
pp. 189-205
Author(s):  
A Lescroël ◽  
PO’B Lyver ◽  
D Jongsomjit ◽  
S Veloz ◽  
KM Dugger ◽  
...  

Inter-individual differences in demographic traits of iteroparous species can arise through learning and maturation, as well as from permanent differences in individual ‘quality’ and sex-specific constraints. As the ability to acquire energy determines the resources an individual can allocate to reproduction and self-maintenance, foraging behavior is a key trait to study to better understand the mechanisms underlying these differences. So far, most seabird studies have focused on the effect of maturation and learning processes on foraging performance, while only a few have included measures of individual quality. Here, we investigated the effects of age, breeding experience, sex, and individual breeding quality on the foraging behavior and location of 83 known-age Adélie penguins at Cape Bird, Ross Sea, Antarctica. Over a 2 yr period, we showed that (1) high-quality birds dived deeper than lower quality ones, apparently catching a higher number of prey per dive and targeting different foraging locations; (2) females performed longer foraging trips and a higher number of dives compared to males; (3) there were no significant age-related differences in foraging behavior; and (4) breeding experience had a weak influence on foraging behavior. We suggest that high-quality individuals have higher physiological ability, enabling them to dive deeper and forage more effectively. Further inquiry should focus on determining the physiological differences among penguins of different quality.


2016 ◽  
Author(s):  
Sydney Olund ◽  
◽  
Susan A. Welch ◽  
Kathleen A. Welch ◽  
Elsa Dorothea Saelens ◽  
...  

2017 ◽  
Author(s):  
John B. Anderson ◽  
◽  
Lauren Simkins ◽  
Sarah Greenwood ◽  
Brian Demet ◽  
...  
Keyword(s):  
Ross Sea ◽  

2020 ◽  
Author(s):  
Jared Nirenberg ◽  
◽  
Brian W. Romans ◽  
Molly O. Patterson ◽  
Denise K. Kulhanek ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
E.J. Chamberlain ◽  
A.J. Christ ◽  
R.W. Fulweiler

Abstract Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2015 ◽  
Vol 19 (4) ◽  
pp. 681-695 ◽  
Author(s):  
Mi Jung Lee ◽  
Jong Ik Lee ◽  
Tae Hoon Kim ◽  
Joohan Lee ◽  
Keisuke Nagao

2021 ◽  
pp. 100029
Author(s):  
Delaney E. Robinson ◽  
John Menzies ◽  
Julia S. Wellner ◽  
Rachel W. Clark

Sign in / Sign up

Export Citation Format

Share Document