Design and Development of Prochlorperazine Maleate Sustained Release Tablets: Influence of Hydrophilic Polymers on the Release rate and In vitro Evaluation

Author(s):  
Nagasamy Venkatesh D ◽  
Sankar S ◽  
S N Meyyanathan ◽  
K Elango ◽  
B Suresh ◽  
...  

 The objective of the present investigation was to develop and evaluate sustained release matrix tablets of prochlorperazine maleate employing different types and levels of hydrophilic matrix agents namely hydroxyl propyl methyl cellulose (HPMC), carbopol and combination of these polymers by wet granulation technique. Prior to compression process, the prepared granules were evaluated for its flow and compression characteristics. The in vitro dissolution of the newly formulated sustained release tablets were compared with standard formulation. The excipients used in this study did not alter the physicochemical properties of the drug, as indicated by the thermal analysis using differential scanning calorimetry technique. The flow and compression characteristics of the prepared granules significantly improved by virtue of granulation process. Also, the prepared matrix tablets showed good mechanical properties in terms of hardness and friability. HPMC based tablet formulations alone showed high release retarding efficiency as compared to carbopol, carbopol and HPMC combinations. The studies indicated that the drug release can be modulated by varying concentrations of polymers. Mathematical analysis of the release kinetics indicated the nature of the drug release from the matrix tablets followed quasi-fickian obeying first order kinetics. 

1970 ◽  
Vol 2 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jesmeen ◽  
Md Mesbah Uddin Talukder ◽  
Abu Taher Md Rajib ◽  
DM Mizanur Rahman

Commercially available four national and four international brands of esomeprazole magnesium sustained release matrix tablets were studied in simulated gastric medium (pH 1.2) for 2 hours and simulated intestinal medium (pH 6.8) for 8 hours time period using USP reference dissolution apparatus. All the national and international brands complied with the USP in-vitro dissolution specifications for drug release in simulated gastric medium. However, one of the national brands (Code: MP-1) and one of the international brands (MP-7) failed to fulfill the official requirement of 80% drug release within 8th hour in simulated intestinal medium. Drug release of that national and international brand were 70.49% and 67.05% respectively within the specified time period, however one national brand (Code: MP-4) released 103.46 % drug within 8th hour in intestinal medium. Drug release profiles were analyzed for zero order, first order and Higuchi equation to reveal the release kinetics perspective of esomeprazole magnesium sustained release matrix tablets. It was found that zero order release kinetics was the predominant release mechanism than first order and Higuchi release kinetics for those brands (Code: MP-2, MP-3, MP-4, MP-5, MP-6 and MP-8) which complied with the USP in vitro dissolution specification for drug releases. On the other hand, first order release kinetics was predominant for one national and also one international non compliant brands (Code: MP-1 and MP-6). Key Words: In vitro dissolution; Sustained release; Market preparations; Kinetic analysis; Esomeprazole; National brand; International brand. DOI: 10.3329/sjps.v2i1.5812Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 27-31


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


2012 ◽  
Vol 11 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Shimul Halder ◽  
Madhabi Lata Shuma ◽  
Abu Shara Shamsur Rouf

The objective of the present study was to develop a once-daily sustained release matrix tablet of Aceclofenac using hydroxypropyl methyl cellulose (Methocel K 100M CR) as release controlling factor and to  evaluate drug release parameters as per various release kinetic models. The tablets were prepared by direct  compression method. The powder blends were evaluated for angle of repose, loose bulk density, tapped bulk density,  compressibility index, total porosity and drug content etc. The tablets were subjected to thickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out for 24  hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus in phosphate buffer (pH 7.4). The powder blends showed satisfactory flow properties, compressibility index and drug content etc. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications. The results of dissolution studies indicated that the formulation F-3 (40% Methocel K100M CR of total weight of tablet) could extend the drug release up to 24 hours and the total release pattern was very close to the theoretical release profile. By comparing the dissolution profiles with the originator brand of Arrestin SR, the formulation F-3 exhibited drug release profile like originator brand. From this study, a decrease in release kinetics of the drug was observed by  increasing the polymer concentration. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which  was only dependent on the type and amount of polymer used. The drug release followed both diffusion and erosion  mechanism in all cases. The drug release from the formulation (F-3) was satisfactory after 3 months storage in 400C  and 75% RH. Besides, this study explored both of the optimum concentration and effect of polymer(s) on  Aceclofenac release pattern from the tablet matrix for 24 hour period. The matrix tablet of Aceclofenac using HPMC  with molecular weight of K100M controlled the drug release effectively for 24 hours; hence the formulation can be  considered as a once daily sustained release tablet of Aceclofenac in order to improve patient compliance. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12485 Dhaka Univ. J. Pharm. Sci. 11(1): 37-43, 2012 (June)


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


2020 ◽  
Vol 13 (3) ◽  
pp. 172-179
Author(s):  
Dharmendra Solanki ◽  
Mohit Motiwale ◽  
Sujata Mahapatra

Sustained-release (SR) matrix tablets of Acyclovir and polysaccharide isolated from corms of Colocasia esculenta, at different drug to polymer ratios, were prepared by using wet granulation method. The formulated tablets were also characterized by physical and chemical parameters and results were found in acceptable limits. The investigation focuses on the influence of the proportion of the matrix material on the mechanism and the release rate of the drug from the tablets. In vitro drug release appears to occur both by diffusion and a swelling-controlled mechanism, indicates the drug release from the tablet was non-Fickian super case II transport. The drug release data fit well to the Zero-order drug release Model and the Korsmeyer equation.


1970 ◽  
Vol 1 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jeseem ◽  
Rumana Jahangir ◽  
DM Mizanur Rahman ◽  
Abu Shara Shamsur Rouf

An attempt was to formulate the oral sustained release Metformin hydrochloride matrix tablets by using hydroxyl methyl cellulose polymer (HPMC) as rate controlling factor and to evaluate drug release parameters as per various release kinetic models. The tablets were prepared by direct compression method. The granules were evaluated for angle of repose, loose bulk density, tapped bulk density, compressibility index, total porosity, drug content etc. and showed satisfactory results. The tablets were subjected to thickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out for 8 hours using United States Pharmacopoeia USP 2 (paddle-type dissolution apparatus) in phosphate buffer (pH 7.4) as dissolution media. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The results indicated that a decrease in release kinetics of the drug was observed by increasing the polymer concentration. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. The drug release followed both diffusion and erosion mechanism in all cases. Besides, this study explored both of the optimum concentration and the effect of polymer on drug release pattern from the tablet matrix for 8 hours period. Key Words: Metformin HCl, Sustained release, Hydrophilic matrix, HPMC, Direct compression   doi:10.3329/sjps.v1i1.1808 S. J. Pharm. Sci. 1(1&2): 51-56


Author(s):  
V. Viswanath ◽  
U. Chandrasekhar ◽  
B. Narasimha Rao ◽  
K. Gnana Prakash

The objective of the present study was to develop a sustained release matrix tablets of Losartan potassium, an anti hypertensive drug. The sustained release tablets were prepared by wet granulation and formulated using different drug and polymer ratios. Hydrophilic natural polymers like xanthan Gum (XG), guar gum and cellulose were used. Compatibility of the drug with various excipients was studied. The compressed tablets were evaluated and showed compliance with Pharmacopoeial limits. Formulation was optimized (F2) on the basis of acceptable tablet properties and in vitro drug release. The resulting formulation produced matrix tablets with optimum hardness, consistent weight uniformity and friability. All tablets but one exhibited gradual and near completion sustained release for losartan potassium and 90.88% released at the end of 12h. The results of dissolution studies indicated that formulation F2 (drug to polymer 1:2) is the most successful of the study and exhibited drug release pattern very close to theoretical release profile. A decrease in release kinetics of the drug was observed on increasing polymer ratio. Applying exponential equation, all the formulation tablets (except F2) showed diffusion-dominated drug release. The mechanism of drug release from F2 was diffusion coupled with erosion.


2020 ◽  
Vol 13 (3) ◽  
pp. 166-173
Author(s):  
Dharmendra Solanki ◽  
Mohit Motiwale

Sustained-release (SR) matrix tablets of Isoniazid and polysaccharide isolated from tubers of Dioscorea alata, at different drug to polymer ratios, were prepared by using wet granulation method. The formulated tablets were also characterized by physical and chemical parameters and results were found in acceptable limits. The investigation focuses on the influence of the proportion of the matrix material on the mechanism and the release rate of the drug from the tablets. In vitro drug release appears to occur both by diffusion and a swellingcontrolled mechanism, indicates the drug release from the tablet was non-Fickian super case II transport. The drug release data fit well to the Korsmeyer equation.


2015 ◽  
Vol 16 (2) ◽  
pp. 177-183
Author(s):  
Md Ziaur Rahman ◽  
Sayed Koushik Ahamed ◽  
Sujan Banik ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of Losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method along with Kollidon SR and Methyl Cellulose as release retardant polymers. The evaluation involves two stages- the physical properties studies of tablets and in vitro release kinetics assessment. The USP paddle method was selected to perform the dissolution test and 900 ml phosphate buffer of pH 6.8 was used as dissolution medium at 50 rpm at 370C. The release kinetics were analyzed. All the formulations followed Higuchi release kinetics. When the release data was plotted into Korsmeyer-Peppas equation, then it was confirmed that F-1, F-2, F-3, F-4 and F-5 exhibited non-fickian type drug release whereas F-6 exhibited fickian type drug release from the tablet matrix. The in-vitro release studies revealed that the formulation F-2 can be taken as an ideal or optimized formulation of sustained release tablets for 24 hours release as it fulfills all the requirements for sustained release tablet. Furthermore, when the tablets were preheated at different temperature (300C, 450C, 600C) before dissolution they showed decrease in drug release compared with ambient temperature DOI: http://dx.doi.org/10.3329/bpj.v16i2.22301 Bangladesh Pharmaceutical Journal 16(2): 177-183, 2013


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document