scholarly journals A Study of the Dry Linear Contact Between Glass Fiber-reinforced Composite Materials and Steel

2019 ◽  
Vol 56 (3) ◽  
pp. 616-620
Author(s):  
Virgil Florescu ◽  
Dorin Rus ◽  
Laurentiu Rece

The thermoplastic materials studied are biphasic. They consist of a polymer mass and a short glass fiber, the percentage being between 10 and 30%. We have shown, both analytically and graphically, the evolution of wear occurring on the steel surface in contact with glass fiber-reinforced polymers. The evolution in time of this process depends on the evolution of the friction coefficient in the process of the dry linear contact between different polymers and different types of steels. We have made a connection between the theoretical case and the experimental results. The experimental method used was the wear imprint method through which the wear depth and wear volume were determined. The wear process is complex and is accompanied by adhesion and corrosion phenomena. Any modification of the input parameters such as speed, temperature, load, quantity of glass fibers in the polymer lead at a certain one evolution of the wear behaviour of the composite material.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3545
Author(s):  
Alessia Romani ◽  
Andrea Mantelli ◽  
Raffaella Suriano ◽  
Marinella Levi ◽  
Stefano Turri

Despite the large use of composites for industrial applications, their end-of-life management is still an open issue for manufacturing, especially in the wind energy sector. Additive manufacturing technology has been emerging as a solution, enhancing circular economy models, and using recycled composites for glass fiber-reinforced polymers is spreading as a new additive manufacturing trend. Nevertheless, their mechanical properties are still not comparable to pristine materials. The purpose of this paper is to examine the additive re-manufacturing of end-of-life glass fiber composites with mechanical performances that are comparable to virgin glass fiber-reinforced materials. Through a systematic characterization of the recyclate, requirements of the filler for the liquid deposition modeling process were identified. Printability and material surface quality of different formulations were analyzed using a low-cost modified 3D printer. Two hypothetical design concepts were also manufactured to validate the field of application. Furthermore, an understanding of the mechanical behavior was accomplished by means of tensile tests, and the results were compared with a benchmark formulation with virgin glass fibers. Mechanically recycled glass fibers show the capability to substitute pristine fillers, unlocking their use for new fields of application.


2017 ◽  
Vol 165 ◽  
pp. 65-73 ◽  
Author(s):  
Davi M. Montenegro ◽  
Francesco Bernasconi ◽  
Markus Zogg ◽  
Matthias Gössi ◽  
Rafael Libanori ◽  
...  

APT Bulletin ◽  
2004 ◽  
Vol 35 (4) ◽  
pp. 27
Author(s):  
Samer H. Petro ◽  
Emory L. Kemp ◽  
Hota V. S. Gangarao

2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


Sign in / Sign up

Export Citation Format

Share Document