The Clogging Effect in the Process of Protein Separation by Ultrafiltration

2020 ◽  
Vol 57 (3) ◽  
pp. 224-237
Author(s):  
Gheorghe Batrinescu ◽  
Roxana-Elena Scutariu ◽  
Nicolae-Ionut Cristea ◽  
Ioana-Alexandra Ionescu ◽  
Gheorghe Nechifor

In this study, five ultrafiltration membranes (polysulfone, cellulose acetate and polyethe-rsulfone) were tested in the treatment of aqueous protein solutions similar to wastewater from fermentation industries. The experiments were made in tangential flow filtration. The permeate flux for the five membranes tested at the optimum pressure of 3 bar decreased due to the effect of clogging the pores by the macromolecular protein solutions. Cellulose acetate membranes showed the lowest permeate flux (Ac-Cel1=152.4 L/m2.h and Ac-Cel2=40.3 L/m2.h) which doesn�t recommend them for the ultrafiltration process of bovine serum albumin. When a polysulfone membrane was used in several cycles of protein-containing wastewater ultrafiltration, the permeate flow decreased progressively from one cycle to another due to the internal clogging of the membrane (501.6 L/m2.h up to 444.0 L/m2.h). Regarding the ultrafiltration of protein solutions with a suspended yeast content, the clogging was predominant on the membrane�s surface, which results in a decrease of the permeate flux by over 50%.

2012 ◽  
Author(s):  
Darunee Bhongsuwan ◽  
Tripob Bhogsuwan ◽  
Narumol Buangam ◽  
Waneerat Mangkalatas

Cellulose acetate (CA) membrane was produced from CA powder, formamid, and acetone. Annealing temperature of 80C and evaporation times of 30, 60, and 90 seconds were chosen in preparation of the CA membranes named R530, R560, and R590, respectively. The membranes were tested using a dead-end stirred cell for filtration of NaCl salt, iron, manganese, and arsenic in the laboratory-prepared water and groundwater. Results of the tests using a membrane R530 at 400 psi showed, that the rejection efficiencies for salt, iron, and manganese in laboratory-prepared water with 3000 ppm NaCl , 2.0 ppm Fe, and 2.0 ppm Mn were 87%, 99%, and 92%, respectively, with a permeate flux of 21 Lm-2hr-1. Tests for the groundwater containing 4815 ppm NaCl and 5.48 ppm Mn without acid treatment showed that membrane R530 gave the flux and rejection for salt and manganese at 24 Lm-2hr-1, 85% and 98%, and for iron and manganese at 21 Lm-2hr-1, 93% and 99%, respectively. In the filtration of arsenic, the prepared membrane had a As rejection of 68 - 70% at 300 and 400 psi when the feed was the laboratory prepared 1 ppm As+3 contaminated water but it was found to be more than 82 - 96% when the feed was a natural water. This is probably because the prepared membrane had a higher rejection efficiency for As+5 ions than As+3 ions. Ion selective capability of the CA membrane shows the potential to use the membrane in filtration of selective ions. Key words: Cellulose acetate membrane, reverse osmosis, nano-filtration, contaminated water, dead-end stirred cell


1990 ◽  
Vol 55 (12) ◽  
pp. 2933-2939 ◽  
Author(s):  
Hans-Hartmut Schwarz ◽  
Vlastimil Kůdela ◽  
Klaus Richau

Ultrafiltration cellulose acetate membrane can be transformed by annealing into reverse osmosis membranes (RO type). Annealing brings about changes in structural properties of the membranes, accompanied by changes in their permeability behaviour and electrical properties. Correlations between structure parameters and electrochemical properties are shown for the temperature range 20-90 °C. Relations have been derived which explain the role played by the dc electrical conductivity in the characterization of rejection ability of the membranes in the reverse osmosis, i.e. rRO = (1 + exp (A-B))-1, where exp A and exp B are statistically significant correlation functions of electrical conductivity and salt permeation, or of electrical conductivity and water flux through the membrane, respectively.


Desalination ◽  
1985 ◽  
Vol 56 ◽  
pp. 251-260 ◽  
Author(s):  
M. Kurihara ◽  
W. Pusch ◽  
T. Tanaka

1977 ◽  
Vol 23 (1) ◽  
pp. 28-34 ◽  
Author(s):  
W H Siede ◽  
U B Seiffert

Abstract We present a new method for quantitative determination of alkaline phosphatase isoenzymes. This method consists of electrophoretic separation on cellulose acetate membranes, special fixation technique to avoid elution and diffusion of enzyme protein during incubation, specific staining, and quantitative evaluation by densitometric measurement. We highly recommend the precedure for routine clinical laboratory use. In all normal individuals we observe two isoenzymes of hepatic origin and one isoenzyme each of osseous, intestinal, and biliary origin. Quantitative normal values are presented. Precision of the method is calculated, the CV being less than 10%. The exactness of densitometric quantification is proved by comparison with kinetic assay of alkaline phosphatase isoenzymes by use of an elution method. Clinical implications of alkaline phosphatase isoenzymograms are reported and discussed in detail.


1987 ◽  
Vol 34 (2) ◽  
pp. 283-296 ◽  
Author(s):  
H.H. Schwarz ◽  
K. Richau ◽  
H.G. Hicke

Sign in / Sign up

Export Citation Format

Share Document