macromolecular protein
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 104
Author(s):  
Yanhong Wang ◽  
Na Li ◽  
Yanping Zheng ◽  
Anqing Wang ◽  
Chunlei Yu ◽  
...  

The survival and prognosis of hepatocellular carcinoma (HCC) are poor, mainly due to metastasis. Therefore, insights into the molecular mechanisms underlying HCC invasion and metastasis are urgently needed to develop a more effective antimetastatic therapy. Here, we report that KIAA1217, a functionally unknown macromolecular protein, plays a crucial role in HCC metastasis. KIAA1217 expression was frequently upregulated in HCC cell lines and tissues, and high KIAA1217 expression was closely associated with shorter survival of patients with HCC. Overexpression and knockdown experiments revealed that KIAA1217 significantly promoted cell migration and invasion by inducing epithelial-mesenchymal transition (EMT) in vitro. Consistently, HCC cells overexpressing KIAA1217 exhibited markedly enhanced lung metastasis in vivo. Mechanistically, KIAA1217 enhanced EMT and accordingly promoted HCC metastasis by interacting with and activating JAK1/2 and STAT3. Interestingly, KIAA1217-activated p-STAT3 was retained in the cytoplasm instead of translocating into the nucleus, where p-STAT3 subsequently activated the Notch and Wnt/β-catenin pathways to facilitate EMT induction and HCC metastasis. Collectively, KIAA1217 may function as an adaptor protein or scaffold protein in the cytoplasm and coordinate multiple pathways to promote EMT-induced HCC metastasis, indicating its potential as a therapeutic target for curbing HCC metastasis.


2021 ◽  
Author(s):  
Babhrubahan Roy ◽  
Janice Sim ◽  
Simon J. Y. Han ◽  
Ajit P. Joglekar

Kinetochores are macromolecular protein assemblies that attach sister chromatids to spindle microtubules and mediate accurate chromosome segregation during mitosis. The outer kinetochore consists of the KMN network, a protein super complex made of Knl1 (yeast Spc105), Mis12 (yeast Mtw1) and Ndc80 (yeast Ndc80), which harbors sites for microtubule binding. Within the KMN network, Spc105 acts as interaction hub of components involved in spindle assembly checkpoint (SAC) signaling. It is known that Spc105 forms a complex with kinetochore component Kre28. However, where Kre28 physically localizes in the budding yeast kinetochore is not clear. The exact function of Kre28 at the kinetochore is also unknown. Here, we reveal how Spc105 and Kre28 interact and how they are organized within bioriented yeast kinetochores using genetics and cell biological experiments. We also identify the interaction interface between the two proteins and show that this interaction is important for Spc105 protein turn-over and essential for their mutual recruitment at the kinetochores. We created several truncation mutants of kre28 that do not localize at the kinetochores and so cannot mediate Spc105 loading at the kinetochores. When we over-expressed these mutants, they could sustain the cell viability even though failed to facilitate proper SAC activation and/or error correction. Thus, we inferred that Kre28 indirectly contributes to chromosome biorientation and high-fidelity segregation by regulating Spc105 localization at the kinetochores.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Gabriele Marcianò ◽  
Midori Ishii ◽  
Olga O. Nerusheva ◽  
Bungo Akiyoshi

The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.


2021 ◽  
pp. 074873042110146
Author(s):  
Alexander E. Mosier ◽  
Jennifer M. Hurley

The circadian clock is the broadly conserved, protein-based, timekeeping mechanism that synchronizes biology to the Earth’s 24-h light-dark cycle. Studies of the mechanisms of circadian timekeeping have placed great focus on the role that individual protein-protein interactions play in the creation of the timekeeping loop. However, research has shown that clock proteins most commonly act as part of large macromolecular protein complexes to facilitate circadian control over physiology. The formation of these complexes has led to the large-scale study of the proteins that comprise these complexes, termed here “circadian interactomics.” Circadian interactomic studies of the macromolecular protein complexes that comprise the circadian clock have uncovered many basic principles of circadian timekeeping as well as mechanisms of circadian control over cellular physiology. In this review, we examine the wealth of knowledge accumulated using circadian interactomics approaches to investigate the macromolecular complexes of the core circadian clock, including insights into the core mechanisms that impart circadian timing and the clock’s regulation of many physiological processes. We examine data acquired from the investigation of the macromolecular complexes centered on both the activating and repressing arm of the circadian clock and from many circadian model organisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Schlichthaerle ◽  
Caroline Lindner ◽  
Ralf Jungmann

AbstractCell-extracellular matrix sensing plays a crucial role in cellular behavior and leads to the formation of a macromolecular protein complex called the focal adhesion. Despite their importance in cellular decision making, relatively little is known about cell-matrix interactions and the intracellular transduction of an initial ligand-receptor binding event on the single-molecule level. Here, we combine cRGD-ligand-decorated DNA tension sensors with DNA-PAINT super-resolution microscopy to study the mechanical engagement of single integrin receptors and the downstream influence on actin bundling. We uncover that integrin receptor clustering is governed by a non-random organization with complexes spaced at 20–30 nm distances. The DNA-based tension sensor and analysis framework provide powerful tools to study a multitude of receptor-ligand interactions where forces are involved in ligand-receptor binding.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianhong Gu ◽  
Saihui Li ◽  
Guoshuai Wang ◽  
Xueqing Zhang ◽  
Yan Yuan ◽  
...  

Cadmium (Cd) can causes osteoporosis and joint swelling. However, the mechanism of Cd toxicity in chondrocytes and how to alleviate Cd poisoning to chondrocytes are still unclear. Herein, we evaluated the toxicity of Cd to chicken chondrocytes, and whether vitamin D can relieve the toxicity of Cd to chondrocytes. Primary chondrocytes were collected from knee-joint cartilage of 15-day-old chicken embryos. They were treated with (0, 1, 2, and 4) μM Cd alone, 10−8 M 1α,25-(OH)2D3 alone, or 2 μM Cd combined with 10−8 M 1α,25-(OH)2D3. We found that Cd significantly inhibited Sox9 and ACAN mRNA expression, which are markers for chondrocyte differentiation, downregulated the mitochondrial membrane potential, upregulated the Bax/B-cell lymphoma 2 ratio. Furthermore, Cd significantly promoted matrix metalloproteinase (MMP)-9 expression, thus accelerating the degradation of extracellular matrix. And Cd also inhibited the expression of main macromolecular protein of extracellular matrix, Collagen type IIα1 (COL2A1) and acid mucopolysaccharide. However, 1α,25-(OH)2D3 pretreatment significantly alleviated the toxicity effects of Cd on the differentiation, apoptosis and extracellular matrix gene expression in primary chondrocytes. Conclusively, Cd exposure could inhibited chicken embryo chondrocytes differentiation, extracellular matrix gene expression, and induced chondrocyte apoptosis. However, these toxic effects of Cd are alleviated by the pretreatment of chondrocytes with 1α,25-(OH)2D3.


Author(s):  
Eelco C. Tromer ◽  
Thomas A. Wemyss ◽  
Ross F. Waller ◽  
Bungo Akiyoshi

AbstractChromosome segregation in eukaryotes is driven by a macromolecular protein complex called the kinetochore that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. In contrast, unicellular flagellates of the class Kinetoplastida have a unique set of kinetochore components. The evolutionary origin and history of these kinetochores remains unknown. Here, we report evidence of homology between three kinetoplastid kinetochore proteins KKT16–18 and axial element components of the synaptonemal complex, such as the SYCP2:SYCP3 multimers found in vertebrates. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. Using a sensitive homology detection protocol, we identify divergent orthologues of SYCP2:SYCP3 in most eukaryotic supergroups including other experimentally established axial element components, such as Red1 and Rec10 in budding and fission yeast, and the ASY3:ASY4 multimers in land plants. These searches also identify KKT16–18 as part of this rapidly evolving protein family. The widespread presence of the SYCP2-3 gene family in extant eukaryotes suggests that the synaptonemal complex was likely present in the last eukaryotic common ancestor. We found at least twelve independent duplications of the SYCP2-3 gene family throughout the eukaryotic tree of life, providing opportunities for new functional complexes to arise, including KKT16–18 in Trypanosoma brucei. We propose that kinetoplastids evolved their unique kinetochore system by repurposing meiotic components of the chromosome synapsis and homologous recombination machinery that were already present in early eukaryotes.


2020 ◽  
Vol 57 (3) ◽  
pp. 224-237
Author(s):  
Gheorghe Batrinescu ◽  
Roxana-Elena Scutariu ◽  
Nicolae-Ionut Cristea ◽  
Ioana-Alexandra Ionescu ◽  
Gheorghe Nechifor

In this study, five ultrafiltration membranes (polysulfone, cellulose acetate and polyethe-rsulfone) were tested in the treatment of aqueous protein solutions similar to wastewater from fermentation industries. The experiments were made in tangential flow filtration. The permeate flux for the five membranes tested at the optimum pressure of 3 bar decreased due to the effect of clogging the pores by the macromolecular protein solutions. Cellulose acetate membranes showed the lowest permeate flux (Ac-Cel1=152.4 L/m2.h and Ac-Cel2=40.3 L/m2.h) which doesn�t recommend them for the ultrafiltration process of bovine serum albumin. When a polysulfone membrane was used in several cycles of protein-containing wastewater ultrafiltration, the permeate flow decreased progressively from one cycle to another due to the internal clogging of the membrane (501.6 L/m2.h up to 444.0 L/m2.h). Regarding the ultrafiltration of protein solutions with a suspended yeast content, the clogging was predominant on the membrane�s surface, which results in a decrease of the permeate flux by over 50%.


Sign in / Sign up

Export Citation Format

Share Document