Implementation of an innovative sensor technology for effective online water quality monitoring in the distribution network

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
B. R. de Graaf ◽  
F. Williamson ◽  
Marcel Klein Koerkamp ◽  
J. W. Verhoef ◽  
R. Wuestman ◽  
...  

For safe supply of drinking water, water quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks, and economic and reputational damages. Therefore, Vitens N.V., the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply. In order to do this Vitens N.V. has set up a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). With the recent innovative developments in the field of online sensoring Vitens kicked off, in 2011, its first major online sensoring program by implementing a sensor grid based on EventLab systems from Optiqua Technologies Pte Ltd in the distribution network. EventLab utilizes bulk refractive index as a generic parameter for continuous real time monitoring of changes in water quality. Key characteristics of this innovative optical sensor technology, high sensitivity generic sensors at low cost, make it ideal for deployment as an early warning system. This paper describes different components of the system, the technological challenges that were overcome, and presents performance data and conclusions from deployment of Optiqua's EventLab systems in the VIP.

2014 ◽  
Vol 9 (4) ◽  
pp. 575-585 ◽  
Author(s):  
F. Williamson ◽  
J. van den Broeke ◽  
T. Koster ◽  
M. Klein Koerkamp ◽  
J. W. Verhoef ◽  
...  

To ensure the safe supply of drinking water, the quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks and economic and reputational damages. Therefore, Vitens, the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply by implementing a smart water grid. To enable this, Vitens has allocated a designated part of their distribution network to be a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). In the VIP, a network of 44 Optiqua EventLab sensors has been installed. EventLab utilizes refractive index as a generic parameter for continuous real-time monitoring of changes in water quality. The EventLab units in the network transmit their data by GPRS to Optiqua servers where the data are processed using event detection algorithms. Deployed as an online sensor network, it allows early detection and rapid response, as well as accurate location of the spread of a contamination within the distribution network. The use of the EventLab sensor network under operational conditions in the VIP is described and its effectiveness is demonstrated by the detection of two water quality events.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 47 ◽  
Author(s):  
S. Kavi Priya ◽  
G. Shenbagalakshmi ◽  
T. Revathi

Drinking Water Distribution Systems facilitate to carry portable water from water resources such as reservoirs, river, and water tanks to industrial, commercial and residential consumers through complex buried pipe networks. Determining the consequences of a water contamination event is an important concern in the field of water systems security and in drinking water distribution systems. The proposed work is based on the development of low cost fuzzy based water quality monitoring system using wireless sensor networks which is capable of measuring physiochemical parameters of water quality such as pH, temperature, conductivity, oxidation reduction potential and turbidity. Based on selected parameters a sensing unit is developed along with several microsystems for analog signal conditioning, data aggregation, sensor data analysis and logging, and remote representation of data to the consumers. Finally, algorithms for fusing the real time data and decision making using fuzzy logic at local level are developed to assess the water contamination risk. Based on the water contamination level in the distribution pipeline the drinking water quality is classified as acceptable/reject/desirable. When the contamination is detected, the sensing unit with ZigBee sends signals to close the solenoid valve inside the pipeline to prevent the flow of contaminated water supply and it intimates the consumers about drinking water quality through mobile app. Experimental results indicate that this low cost real time water quality monitoring system acts as an ideal early warning system with best detection accuracy. The derived solution can also be applied to different IoT (Internet of Things) scenario such as smart cities, the city transport system etc.


2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2013 ◽  
Vol 779-780 ◽  
pp. 1408-1413
Author(s):  
Shu Yuan Li ◽  
Jian Hua Tao ◽  
Lei Yu

Drinking water sources play an important role in assurance of life safety, normal production and social stability. In this paper, a real-time remote water quality monitoring and early warning system has been developed. The paper concentrates on the system architecture and key techniques of the real-time water quality monitoring and early warning. The implementation of the system by advanced water quality sensor techniques, wireless transmission, databases and water quality modeling is retraced in detail. It can be applied to the real-time remote monitoring of water quality and decision support for water pollution incidents.


2017 ◽  
Vol 3 (5) ◽  
pp. 865-874 ◽  
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Drinking water quality along distribution systems is critical for public health.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450079 ◽  
Author(s):  
PAWAN WHIG ◽  
SYED NASEEM AHMAD

In this paper, the design of an ASIC is presented that implement a low-cost system for the supervision of water quality in urban areas or rivers. Photo catalytic sensor (PCS) estimates the parameter biological oxygen demand (BOD) which is generally used to estimate quality of water. The system proposed in this paper involves a simple potentiometric approach that provides a correlation in the input–output signals of low-cost sensors. This approach which is more users friendly and fast in operation is obtained by modeling and optimization of sensor for water quality monitoring. This is to overcome several drawbacks generally found in the previous flow injection analysis method of determining chemical oxygen demand (COD)-like complex designing, nonlinearity and long computation time. The system constitutes a significant cost reduction in the supervision of water quality monitoring. The main reason of employing a readout circuit to PCS circuitry, is the fact that the fluctuation of O 2 influences the threshold voltage, which is internal parameter of the FET and can manifest itself as a voltage signal at output but as a function of the trans-conductance gain. The trans-conductance is a passive parameter and in order to derive voltage or current signal from its fluctuations the sensor has to be attached to readout circuit. This circuit provides high sensitivity to the changes in percentage of O 2 in the solution. In this design simple potentiometric approach with few passive components are used to build a readout circuit. The paper focuses on the electronic implementation of the readout system for the PCS which optimize the circuit performance and increases reliability.


2011 ◽  
Vol 1 (4) ◽  
pp. 233-241 ◽  
Author(s):  
Caetano C. Dorea ◽  
Murray R. Simpson

Turbidity tubes have been considered to be the field method of choice for drinking water quality monitoring in resource-limited contexts because of their relative simplicity and low cost in comparison with conventional (nephelometric) turbidimeters. These tubes utilise the principle of visual extinction of a submerged target for turbidity determination and were therefore thought to be subject to user subjectivity, possibly affecting results. This study evaluated their performance under both field and controlled-laboratory conditions. Results from turbidity tubes can differ substantially from those obtained with conventional turbidimeters; this is of particular importance in the reporting of low turbidity (<10 NTU) measurements. These differences could be due to a combination of factors, such as: user variability, differences in calibration scales, and turbidity tube target shape and background colour. In view of their limitations, the usefulness of turbidity tubes for drinking water quality assessments and recommendations on the reporting of their results are also discussed.


Sign in / Sign up

Export Citation Format

Share Document