scholarly journals Development of an Optimum Hull Form for a Container Ship with Minimum Wave Resistance

2003 ◽  
Vol 40 (4) ◽  
pp. 8-15 ◽  
1994 ◽  
Vol 31 (02) ◽  
pp. 149-160
Author(s):  
Donald C. Wyatt ◽  
Peter A. Chang

A numerically optimized bow design is developed to reduce the total resistance of a 23 000 ton ammunition ship (AE 36) at a speed of 22 knots. An optimization approach using slender-ship theory for the prediction of wave resistance is developed and applied. The new optimization procedure is an improvement over previous optimization methodologies in that it allows the use of nonlinear constraints which assure that the final design remains within practical limits from construction and operational perspectives. Analytic predictions indicate that the AE 36 optimized with this procedure will achieve a 40% reduction in wave resistance and a 33% reduction in total resistance at 22 knots relative to a Kracht elliptical bulb bow design. The optimization success is assessed by the analysis of 25th scale model resistance data collected at the David Taylor Research Center deepwater towing basin. The experimental data indicate that the optimized hull form yields a 51% reduction in wave resistance and a 12% reduction in total resistance for the vessel at 22 knots relative to the Kracht bulb bow design. Similarly encouraging results are also observed when comparisons are made with data collected on two other conventionally designed AE 36 designs.


Author(s):  
Hyun-Suk Park ◽  
Dae-Won Seo ◽  
Ki-Min Han ◽  
Dae-Heon Kim ◽  
Tae-Bum Ha

Hull form had been unavoidably optimized for a single speed condition, normally a contract speed at design draft in the past many years due to various reasons such as limited design period, less advanced data processing capacity of a computer and so on. For this reason, for maximizing present ship’s operating efficiency, additional analysis relevant to resistance performance for slow steaming condition is newly required since the original hull form for this study also was developed about 10 years ago. In this paper, the resistance performances corresponding to various trim conditions are investigated not only for ship’s original contract speed (Fn: 0.255) but for slow speed (Fn: 0.163∼0.183) by slow steaming. Through this study, it can be accomplished to identify the optimum trim condition meeting the objectives of ship operator. Further to the trim optimization, bulbous bow shape renovation was carried out for off design condition (Fn:0.173) and both of CFD results, one is from an original bulbous bow shape, the other is from a reformed bulbous bow shape by us, are compared each other to identify the concrete reason for the improvement of resistance performance. Commercial CFD code of the STAR-CCM+ was utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of Starccm+, the experimental result of the subject hull form is referred and compared with the result from STAR-CCM+. Form factor prediction method by CFD that is based on extracting form pressure resistance component from difference of two different computational domains is presented. In this study, it is investigated to compare the form factor calculated by CFD with the model test result. This approach allows hull form designer to calculate a form factor corresponding ship’s trim variation by CFD in order to separate total resistance into wave making resistance and viscous resistance for more accurate effective power prediction.


2012 ◽  
Vol 19 (3) ◽  
pp. 16-25 ◽  
Author(s):  
Jianglong Sun ◽  
Xujian Lv ◽  
Weibin Liu ◽  
Hanwen Ning ◽  
Xianwen Chen

ABSTRACT In this paper, we consider an optimization of the hull shape in order to minimize the total resistance of a ship. The total resistance is assumed to be the sum of the wave resistance computed on the basis of the thin-ship theory and the frictional resistance. Smoothness of hull lines is proved with mathematical procedure, in which differentials of the hull lines functions are analyzed. The wave-making resistance optimization, involving a genetic algorithm, uses Michell integral to calculate wave resistance. A certain hull form is generated by the method using cross section information of a modified DTMB model ship 5415 and a comparative experiment is carried out. Experimental and calculation result show that the method is of good adaptability for designing certain types of ships with excellent resistance performance.


Author(s):  
Ulrik D. Nielsen ◽  
Jacob R. Johannesen ◽  
Harry B. Bingham ◽  
Mogens Blanke ◽  
Soizic Joncquez

2001 ◽  
Vol 45 (03) ◽  
pp. 197-204
Author(s):  
N. E. Markov ◽  
K. Suzuki

A technique for reducing ship wave resistance is presented. It is based on a single B-spline patch which approximates the hull surface. A selected specific change of the B-spline coefficients resembles a smooth shift of the ship sections in the longitudinal direction. An unconstrained Davidson-Fletcher-Powell (DFP) optimization procedure controls the changes. The wave resistance is evaluated by a higher-order Rankine source panel method. The numerical results, shown for Series 60 and the Hamburg Test Case (HTC) containership, prove that the method is appropriate for preliminary hull form design.


1997 ◽  
Vol 335 ◽  
pp. 305-321 ◽  
Author(s):  
XUE-NONG CHEN ◽  
SOM DEO SHARMA

This paper deals with the wave pattern and wave resistance of a slender ship moving steadily at supercritical speed in a shallow water channel. Using, successively, linear and nonlinear shallow-water wave theory it is demonstrated that, if the hull form is adapted to speed and channel geometry according to certain rules, the ship waves can be made to form a localized pattern around the ship that moves at the same speed as the ship and at the same time the associated wave resistance can be made to vanish. In the nonlinear case, the zero-wave-resistance ship hull is derived from a KP equation solution of the oblique interaction of two identical solitons. This astonishing phenomenon may be called shallow-channel superconductivity.


Author(s):  
Takashi Tsubogo

The Michell’s integral (Michell 1898) for the wave making resistance of a thin ship has not been used widely in practice, since its accuracy is questioned especially for a Froude number range about 0.2 to 0.35 for conventional ships. We examine calculations by Michell’s integral for some ship forms, e.g. a parabolic strut, Wigley hull and so on. As a result, one reason of the disagreement with experiments is revealed. It must be the gradient of hull form in the depth direction. Then a thin ship theory including the hull gradient effect in the depth direction is presented, which improves slightly in low Froude numbers but needs more computing time than Michell’s integral so as to solve a boundary integral equation.


2015 ◽  
Vol 4 (4) ◽  
pp. 489 ◽  
Author(s):  
Nitonye Samson ◽  
Adumene Sidum

This paper presents a comparative estimation of the hull form resistance for Cargo ship, Ocean-going Tug and Container ship. The research study evaluates the influences of various ship hull parameters in relations to the vessel speeds and level of turbulence (Reynolds number). The modeling was done using MATLAB software and the model test technique based on the ITTC, ATTC, Granville and Hughes friction line application. The result shows that the hull form resistances follow the same trend in the ITTC, ATTC and Granville models, while the Hughes model gave a different trend with other techniques. It further revealed that as the speed increases by 10knots, the frictional resistance coefficients decrease by 11.86% for the ITTC & Granville models, and 12.03% for the Hughes model. For Ocean-going Tug and Container Ship, the frictional resistance coefficient decrease by 12.31% for the ITTC & Granville models, and 12.14% for the Hughes model. The Reynolds number increase by 62.52% for every 10knots increase in the speed of the Cargo ship and 62.23% for every 10knots increase in the speed of the Ocean going tug and Containership. At various experimental speeds, the results showed that for every 1 knots increase in the speed of the Containership, the effective power developed increases by 9.45%. This provides a technical and analytical guide on hull form resistance trend for engineers and ship operators.


Sign in / Sign up

Export Citation Format

Share Document