Development and Assessment of a Total Resistance Optimized Bow for the AE 36

1994 ◽  
Vol 31 (02) ◽  
pp. 149-160
Author(s):  
Donald C. Wyatt ◽  
Peter A. Chang

A numerically optimized bow design is developed to reduce the total resistance of a 23 000 ton ammunition ship (AE 36) at a speed of 22 knots. An optimization approach using slender-ship theory for the prediction of wave resistance is developed and applied. The new optimization procedure is an improvement over previous optimization methodologies in that it allows the use of nonlinear constraints which assure that the final design remains within practical limits from construction and operational perspectives. Analytic predictions indicate that the AE 36 optimized with this procedure will achieve a 40% reduction in wave resistance and a 33% reduction in total resistance at 22 knots relative to a Kracht elliptical bulb bow design. The optimization success is assessed by the analysis of 25th scale model resistance data collected at the David Taylor Research Center deepwater towing basin. The experimental data indicate that the optimized hull form yields a 51% reduction in wave resistance and a 12% reduction in total resistance for the vessel at 22 knots relative to the Kracht bulb bow design. Similarly encouraging results are also observed when comparisons are made with data collected on two other conventionally designed AE 36 designs.

2012 ◽  
Vol 19 (3) ◽  
pp. 16-25 ◽  
Author(s):  
Jianglong Sun ◽  
Xujian Lv ◽  
Weibin Liu ◽  
Hanwen Ning ◽  
Xianwen Chen

ABSTRACT In this paper, we consider an optimization of the hull shape in order to minimize the total resistance of a ship. The total resistance is assumed to be the sum of the wave resistance computed on the basis of the thin-ship theory and the frictional resistance. Smoothness of hull lines is proved with mathematical procedure, in which differentials of the hull lines functions are analyzed. The wave-making resistance optimization, involving a genetic algorithm, uses Michell integral to calculate wave resistance. A certain hull form is generated by the method using cross section information of a modified DTMB model ship 5415 and a comparative experiment is carried out. Experimental and calculation result show that the method is of good adaptability for designing certain types of ships with excellent resistance performance.


2001 ◽  
Vol 45 (03) ◽  
pp. 197-204
Author(s):  
N. E. Markov ◽  
K. Suzuki

A technique for reducing ship wave resistance is presented. It is based on a single B-spline patch which approximates the hull surface. A selected specific change of the B-spline coefficients resembles a smooth shift of the ship sections in the longitudinal direction. An unconstrained Davidson-Fletcher-Powell (DFP) optimization procedure controls the changes. The wave resistance is evaluated by a higher-order Rankine source panel method. The numerical results, shown for Series 60 and the Hamburg Test Case (HTC) containership, prove that the method is appropriate for preliminary hull form design.


2009 ◽  
Author(s):  
S. M. Çalisal ◽  
D. B. Danisman ◽  
Ö. Gören ◽  
K. Gould ◽  
P. Maurice ◽  
...  

Waterline parabolization is a method to reduce the wave resistance of a displacement type hull with a parallel mid-body by adding amidships bulbs to the hull. Tow tank tests of the optimized bulbs at ITU confirmed that significant reductions in total resistance were obtained. This paper describes the use of a nonlinear optimization technique developed at the University of British Columbia (UBC) and tank testing at Istanbul Technical University (ITU) to find the optimum shape and location of midship bulbs as well as midship bulbs and a bow bulb together. Tow-tank tests at UBC and ITU have shown that mid-ship bulbs can provide significant reductions in total resistance. The study validated the use of the technique both constraining the displacement and when only constraining the draft (retrofit). The optimization algorithm considers only wave resistance which is calculated with a Dawson's method type program; TRAWSON. In this study a RO/RO ferry hull is used as the baseline hull form. The tank tests revealed that the bulb location and geometry identified as the optimum, at Froude number Fn = 0.33, by the optimization program achieved a reduction in total resistance of 15 percent at constant displacement and retrofit applications.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


Author(s):  
Farrokh Zarifi-Rad ◽  
Hamid Vajihollahi ◽  
James O’Brien

Scale models give engineers an excellent understanding of the aerodynamic behavior behind their design; nevertheless, scale models are time consuming and expensive. Therefore computer simulations such as Computational Fluid Dynamics (CFD) are an excellent alternative to scale models. One must ask the question, how close are the CFD results to the actual fluid behavior of the scale model? In order to answer this question the engineering team investigated the performance of a large industrial Gas Turbine (GT) exhaust diffuser scale model with performance predicted by commercially available CFD software. The experimental results were obtained from a 1:12 scale model of a GT exhaust diffuser with a fixed row of blades to simulate the swirl generated by the last row of turbine blades five blade configurations. This work is to validate the effect of the turbulent inlet conditions on an axial diffuser, both on the experimental front and on the numerical analysis approach. The object of this work is to bring forward a better understanding of velocity and static pressure profiles along the gas turbine diffusers and to provide an accurate experimental data set to validate the CFD prediction. For the CFD aspect, ANSYS CFX software was chosen as the solver. Two different types of mesh (hexagonal and tetrahedral) will be compared to the experimental results. It is understood that hexagonal (HEX) meshes are more time consuming and more computationally demanding, they are less prone to mesh sensitivity and have the tendancy to converge at a faster rate than the tetrahedral (TET) mesh. It was found that the HEX mesh was able to generate more consistent results and had less error than TET mesh.


2022 ◽  
Vol 428 ◽  
pp. 131492
Author(s):  
Valeria Tacchino ◽  
Paola Costamagna ◽  
Silvia Rosellini ◽  
Valter Mantelli ◽  
Alberto Servida

2006 ◽  
Vol 129 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Andrzej W. Ordys ◽  
Masayoshi Tomizuka ◽  
Michael J. Grimble

The paper discusses state-space generalized predictive control and the preview control algorithms. The optimization procedure used in the derivation of predictive control algorithms is considered. The performance index associated with the generalized predictive controller (GPC) is examined and compared with the linear quadratic (LQ) optimal control formulation used in preview control. A new performance index and consequently a new algorithm is proposed dynamic performance predictive controller (DPPC) that combines the features of both GPC and preview controller. This algorithm minimizes the performance index through a dynamic optimization. A simple example illustrates the features of the three algorithms and prompts a discussion on what is actually minimized in predictive control. The DPPC algorithm, derived in this paper, provides for a minimum of the predictive performance index. The differences and similarities between the preview control and the predictive control have been discussed and optimization approach of predictive control has been explained.


2012 ◽  
Vol 154 (A2) ◽  

In order to provide data to assist in developing and validating a numerical code to simulate the flooding immediately following damage scale model experiments were conducted on a fully constrained model to investigate the progressive flooding through a complex series of internal compartments within a generic destroyer type hull form. A 3.268 metre long model of a generic destroyer hull form with a simplified, typical internal arrangement was constructed to cover the configuration of greatest interest. A very rapid damage opening scenario was simulated by rupturing a taut membrane covering an opening. The model was instrumented to measure the levels of water and the air pressures in various compartments. In addition, video footage was obtained of the flooding process from both internally and externally of the model. Previous work presented by Macfarlane et al. (2010) showed the results for the unconstrained model. This paper reports on the outcomes from the experimental program where the model was fully constrained in all six degrees of freedom. Firstly, tests were conducted in calm water with damage opening extents ranging from 50% to 100%. When the damage opening was only 50% the rate of rise of water in each of the compartments was only marginally slower than for the 100% damage extent case. Secondly, the test results in calm water were compared against results from tests in regular beam seas. A ‘set-up’ of water inside each of the compartments on the 2nd Deck was found during the wave tests. The result of this is that the mean equilibrium water level in each compartment in the regular beam sea cases is noticeably higher than the equivalent calm water case, particularly for the two compartments on the port side, away from the damage. Finally, analysis of the data from further calm water and beam sea tests suggests that a similar result also occurs when the model is fixed at various non-zero heel angles.


Author(s):  
Renato Skejic ◽  
Sverre A. Alterskjær

The field of sea based modern shipping activities is constantly seeking for its improvements to achieve the economically justified operational patterns. In the same time, the sea transportation activities also need to satisfy currently imposed and, as well as, upcoming in the near future, safety and ecologically friendly footprint characteristics when it comes to the emission of greenhouse gasses and hard particles [1]. Fulfilment of the stated requirements consequently asks for the determination of certain vessels operational parameters such as the total resistance of a vessel which estimation is frequently carried out for predefined calm and deep-water environmental scenario. Current work is dealing with investigation of the total resistance parameter in calm and deep water for the preselected types of the trimaran ship hull configurations. The total resistance is estimated according to [2] recommended procedure through applicability of the robust and reliable method which is capable to address the problem of wave resistance prediction in calm and deep water. The method has origin in ordinary and modified Michell thin – ship wave theory by considering the viscous effects [3]. The differences between the utilized theories are discussed from the qualitative and quantitative point of view of the obtained results in comparison to the open source available theoretical experimental data and from the perspective of common engineering practice. Finally, based on the above description, the performed total resistance studies are used as a base for formulation of the optimization procedure which may be used in the trimaran vessel preliminary designs in the range of the forward speeds commonly expected during the normal operational life of the investigated trimaran vessel.


Sign in / Sign up

Export Citation Format

Share Document