scholarly journals Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization

2006 ◽  
Vol 13B (6) ◽  
pp. 625-632
Author(s):  
Su-Jeong Ko
Author(s):  
A. Murat Yagci ◽  
Tevfik Aytekin ◽  
Fikret S. Gurgen

Matrix factorization models often reveal the low-dimensional latent structure in high-dimensional spaces while bringing space efficiency to large-scale collaborative filtering problems. Improving training and prediction time efficiencies of these models are also important since an accurate model may raise practical concerns if it is slow to capture the changing dynamics of the system. For the training task, powerful improvements have been proposed especially using SGD, ALS, and their parallel versions. In this paper, we focus on the prediction task and combine matrix factorization with approximate nearest neighbor search methods to improve the efficiency of top-N prediction queries. Our efforts result in a meta-algorithm, MMFNN, which can employ various common matrix factorization models, drastically improve their prediction efficiency, and still perform comparably to standard prediction approaches or sometimes even better in terms of predictive power. Using various batch, online, and incremental matrix factorization models, we present detailed empirical analysis results on many large implicit feedback datasets from different application domains.


2013 ◽  
Vol 411-414 ◽  
pp. 2223-2228
Author(s):  
Dong Liang Su ◽  
Zhi Ming Cui ◽  
Jian Wu ◽  
Peng Peng Zhao

Nowadays personalized recommendation algorithm of e-commerce can hardly meet the needs of users as an ever-increasing number of users and items in personalized recommender system has brought about sparsity of user-item rating matrix and the emergence of more and more new users has threatened recommender system quality. This paper puts forward a pre-filled collaborative filtering recommendation algorithm based on matrix factorization, pre-filling user-item matrixes by matrix factorization and building nearest-neighbor models according to new user profile information, thus mitigating the influence of matrix sparsity and new users and improving the accuracy of recommender system. The experimental results suggest that this algorithm is more precise and effective than the traditional one under the condition of extremely sparse user-item rating matrix.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Shuqin Zhang ◽  
Liu Yang ◽  
Jinwen Yang ◽  
Zhixiang Lin ◽  
Michael K Ng

Abstract Single cell RNA-sequencing (scRNA-seq) technology, a powerful tool for analyzing the entire transcriptome at single cell level, is receiving increasing research attention. The presence of dropouts is an important characteristic of scRNA-seq data that may affect the performance of downstream analyses, such as dimensionality reduction and clustering. Cells sequenced to lower depths tend to have more dropouts than those sequenced to greater depths. In this study, we aimed to develop a dimensionality reduction method to address both dropouts and the non-negativity constraints in scRNA-seq data. The developed method simultaneously performs dimensionality reduction and dropout imputation under the non-negative matrix factorization (NMF) framework. The dropouts were modeled as a non-negative sparse matrix. Summation of the observed data matrix and dropout matrix was approximated by NMF. To ensure the sparsity pattern was maintained, a weighted ℓ1 penalty that took into account the dependency of dropouts on the sequencing depth in each cell was imposed. An efficient algorithm was developed to solve the proposed optimization problem. Experiments using both synthetic data and real data showed that dimensionality reduction via the proposed method afforded more robust clustering results compared with those obtained from the existing methods, and that dropout imputation improved the differential expression analysis.


Sign in / Sign up

Export Citation Format

Share Document