Effect of Dietary Selenium Binding Yeast Peptide on Growth Performance, Tissue Se, Serum Glutathione Peroxidase Activity and Meat Quality in Finishing Pigs

2004 ◽  
Vol 33 (7) ◽  
pp. 1206-1211 ◽  
2018 ◽  
Vol 19 (2) ◽  
pp. 166-176 ◽  
Author(s):  
Radmila Marković ◽  
Jelena Ćirić ◽  
Marija Starčević ◽  
Dragan Šefer ◽  
Milan Ž. Baltić

AbstractToday, a few differing sources of selenium (Se), i.e. inorganic, organic, and nano forms of Se, are used as feed supplements for poultry. Published research indicates that nano-Se and organic Se possess comparable efficiency to inorganic Se in increasing GSH-Px activity of plasma and various tissues, but they deposit at higher rates in various tissues. However, there are principal differences in absorption mechanisms, metabolism, and efficiency of these three forms of Se. The aim of this review was to analyze the available literature on the effects of different Se sources and levels in the diet on glutathione peroxidase (GSH-Px) activity, tissue Se distribution and growth performance in poultry. Higher levels of Se increase GSH-Px activity in the body, but this reaches a plateau even if Se concentrations in diet increase further, while the deposition of Se in tissues increases as Se content in diet increases. In addition, many studies have shown the positive effects of adding Se to diet on growth performance in poultry. Optimal Se supplementation is necessary not only for good poultry health but also to ensure and preserve meat quality during storage and to provide human beings with this microelement.


2020 ◽  
Author(s):  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Maryam Hafizi ◽  
Kamran Taherpour ◽  
Mohammad Hassan Nazaran

Abstract Background: Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. Methods: This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-d-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100 % of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results: Diets CTM50 and CTM100 increased average daily gain (ADG), European performance index (EPI), and tibia length compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and serum malondialdehyde level and highest EPI, tibia ash, zinc, manganese, and copper contents, and serum total antioxidant capacity (P < 0.05). The apparent ileal digestibilities of phosphorus and zinc were lower in the ITM group compared with the CTM25 and CTM50 groups (P < 0.05). Broiler chickens fed any of the diets, except diet CTM25, exhibited higher serum glutathione peroxidase and superoxide dismutase activities than those fed the NTM diet, where the best glutathione peroxidase activity was found for CTM100 treatment (P < 0.05). Conclusions: These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, bone mineralization, and antioxidant status, a totally replacing ITM by equivalent levels of CTM could also improve performance index and glutathione peroxidase activity of broiler chickens under the conditions of this study.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hossein Ali Ghasemi ◽  
Iman Hajkhodadadi ◽  
Maryam Hafizi ◽  
Kamran Taherpour ◽  
Mohammad Hassan Nazaran

Abstract Background Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. Methods This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-day-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100% of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results Diets CTM50 and CTM100 increased average daily gain (ADG), European performance index (EPI), and tibia length compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and serum malondialdehyde level and highest EPI, tibia ash, zinc, manganese, and copper contents, and serum total antioxidant capacity (P < 0.05). The apparent ileal digestibilities of phosphorus and zinc were lower in the ITM group compared with the CTM25 and CTM50 groups (P < 0.05). Broiler chickens fed any of the diets, except diet CTM25, exhibited higher serum glutathione peroxidase and superoxide dismutase activities than those fed the NTM diet, where the best glutathione peroxidase activity was found for CTM100 treatment (P < 0.05). Conclusions These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, bone mineralization, and antioxidant status, a totally replacing ITM by equivalent levels of CTM could also improve performance index and glutathione peroxidase activity of broiler chickens under the conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document