scholarly journals Effect of toll-like receptor 3 agonist poly I:C on intestinal mucosa and epithelial barrier function in mouse models of acute colitis

2017 ◽  
Vol 23 (6) ◽  
pp. 999 ◽  
Author(s):  
Hong-Wei Zhao ◽  
Yue-Hong Yue ◽  
Hua Han ◽  
Xiu-Li Chen ◽  
Yong-Gang Lu ◽  
...  
2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S29-S30
Author(s):  
Chirosree Bandyopadhyay ◽  
Leslayann Schecterson ◽  
Barry Gumbiner

Abstract Deficits in gastrointestinal (GI) epithelial barrier function play important roles in the pathogenesis of Inflammatory Bowel Disease (IBD). The CDH1 gene encoding E-cadherin, a key component of the epithelial junctional complex, is associated with Ulcerative Colitis (UC), and perhaps Crohn’s disease (CD). E-cadherin is the principle adhesive component of the adherens junction, and it regulates paracellular permeability by facilitating the formation of tight junctions and organizing the entire epithelial junction complex. We have identified monoclonal antibodies (mAbs) that bind to E-cadherin and activate adhesion in a variety of epithelial cells. In this study, we aim to test the hypothesis that strengthening E-cadherin adhesion with activating mAbs will enhance barrier function and decrease progression of IBD while maintaining mucosal health and homeostasis. Mouse mAbs to E-cadherin have been tested in vivo using the IL10-knock out mouse and adoptive T cell transfer model of colitis with similar histological evaluation. Transfer of CD4+CD45Rb high T cells from donor to immunocompromised mice produced typical histologic lesions for the adoptive transfer model including inflammation of the mucosa/submucosa, crypt damage, erosions, edema, and epithelial hyperplasia. E-Cadherin activating mAb (r56.4) treatment reduced total colitis score, mucosal hyperplasia, inflammation, gland loss scores, and neutrophilic infiltration in CD45Rb high T cell recipient mice compared to control E-cad mAb (r19.1–10) treatment. In IL10 KO BL6 mouse model of colitis, average lesion severity scores were lower in the r56.4 treatment group in comparison to the r19.1–10 treatment group for all the histological hallmarks of colitis. Further studies are in progress to investigate the therapeutic potential of E-Cadherin mAbs in the rescue of inflammation in pre-clinical mouse models of colitis.


2012 ◽  
Vol 142 (5) ◽  
pp. S-67
Author(s):  
Javier Estévez ◽  
Monica Aguilera ◽  
Joan Antoni Fernandez-Blanco ◽  
Patri Vergara ◽  
Vicente Martinez

2013 ◽  
Vol 144 (5) ◽  
pp. S-933
Author(s):  
Javier Estévez ◽  
Monica Aguilera ◽  
Ricardo Paricio ◽  
Vicente Martinez

2017 ◽  
Vol 42 (4) ◽  
pp. 1390-1406 ◽  
Author(s):  
Yingying Li ◽  
Yuan Gao ◽  
Ting Cui ◽  
Ting Yang ◽  
Lan Liu ◽  
...  

Background/Aims: Vitamin A (VA) protects the intestinal epithelial barrier by improving cell migration and proliferation. Our previous studies demonstrated that VA deficiency (VAD) during pregnancy suppresses the systemic and mucosal immune responses in the intestines of offspring and that VA supplementation (VAS) during early life can increase immune cell counts. However, little is known about the mechanisms by which VA regulates intestinal epithelial barrier function. Methods: Caco-2 cells were treated with all-trans retinoic acid (ATRA) for 24 hours to determine the optimum ATRA concentration to which the cells in question respond. Caco-2 cells were infected with recombinant adenoviruses carrying retinoic acid receptor beta (Ad-RARβ) and small interfering RARβ(siRARβ) to assess the effects of RARβ signalling on the expression of specific proteins. A siTLR4 lentivirus was used to knockdown Toll-like receptor 4 (TLR4) in Caco-2 cells to determine its role in the protective effects of VA on the intestinal epithelial barrier, and experiments involving TLR4-knock-out mice were performed to verify the effect of TLR4. VA normal (VAN), VAD and VAS rat models were established to confirm that changes in RARβ, TLR4 and ZO-2 expression levels that occurred following decreases or increases in retinol concentrations in vivo, and the permeability of the Caco-2 cell monolayer, as well as that of the epithelial barrier of the rat intestine was detected by measuring transepithelial resistance (TER) or performing enzyme-linked immunosorbent assay (ELISA). Retinoic acid receptor (RAR), toll like receptor (TLR) and tight junction (TJ) mRNA and protein expression levels in Caco-2 cells and the colon monolayers in the rat and mouse models were measured by PCR and western blotting, respectively. Co-immunoprecipitation (co-IP) and immunofluorescence staining were performed to assess the interactions among RARβ, TLR4 and zonula occluden-2 (ZO-2) in Caco-2 cells, and chromatin immunoprecipitation (ChIP) assay was performed to assess the binding between RARβ and the TLR4 promoter sequence in Caco-2 cells. Results: In the present study, ATRA treatment not only increased the TER of the Caco-2 monolayer but also up-regulated the expression levels of RARβ, TLR4 and ZO-2 in Caco-2 cells. The expression levels of these three proteins were significantly decreased in the colonic epithelial monolayers of VAD rats compared with those of VAN rats and were significantly increased following VAS in the corresponding group compared with the control group. Furthermore, the above changes in TLR4 and ZO-2 expression levels were augmented or attenuated by Ad-RARβ or siRARβ infection, respectively, in Caco-2 cells. Interestingly, siTLR4 down-regulated ZO-2 expression but did not affect RARβ expression in Caco-2 cells, and in VAD mice the lack of TLR4 did not affect ZO-2 expression. We noted direct interactions between RARβ and TLR4, TLR4 and ZO-2 in Caco-2 cells, and ChIP assay showed that RARβ could bind to the TLR4 promoter but not the ZO-2 promoter in Caco-2 cells. Conclusion: Taken together, our results indicate that RARβ enhanced ZO-2 expression by regulating TLR4 to improve intestinal epithelial barrier function in Caco-2 cells, as well as in rat and mouse models, but not in humans.


2016 ◽  
Vol 27 (4) ◽  
pp. 617-626 ◽  
Author(s):  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Shan Cao ◽  
Lan Liu ◽  
Hee Kyoung Chung ◽  
...  

Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.


Sign in / Sign up

Export Citation Format

Share Document