Device for Wood-Cutting Tool Hardening

Author(s):  
Anatoly M. Buglaev ◽  

Choosing effective methods and devices for surface hardening of wood-cutting tools is problematic due to the variety of their designs and operating conditions. In this regard, the development of such devices becomes an urgent task. According to the literature, one of the effective methods for increasing the service life of machine parts and tools is electrospark hardening or electrospark alloying. Industrial electrospark installations such as “EFI” (electrophysical measurements) and “Elitron” with manual vibrators are used for electrospark hardening. However, using manual vibrators significantly increases the labour intensity and hardening time. Moreover, the surface quality after hardening with manual vibrators is often unsatisfactory. Various mechanized installations have been developed in order to reduce the labour intensity of electrospark hardening. Nevertheless, these installations are designed to harden specific parts and do not allow hardening tools of various designs, including woodcutting tools. The surface quality after hardening in mechanized installations does not always satisfy the customer. Further surface plastic deformation treatments, such as rolling and unrolling with rollers and balls, as well as diamond burnishing, are often used to improve the surface quality after electrospark hardening. The surface quality after additional processing by these methods boosts, although the labour intensity and cost of the hardening process increase. To increase the wear resistance of machine parts and tools, it is reasonable to reduce the height parameters of roughness, increase microhardness, and form the residual compressive stresses, which is ensured by the methods of surface plastic deformation. In this regard, it becomes necessary to use electrospark hardening simultaneously with surface plastic deformation. The work presents the design and features of using the device for hardening. The device was used to strengthen the thicknesser machine knives, which made it possible to almost double their durability. Applying this device, in comparison with using the electrospark hardening with a manual vibrator, reduces the roughness of the hardened surface and improves the surface quality of the processed workpieces. The modes of hardening have been installed, making it possible to effectively harden wood-cutting tools. For citation: Buglaev A.M. Device for Wood-Cutting Tool Hardening. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 5, pp. 134–141. DOI: 10.37482/0536-1036-2021-5-134-141

Author(s):  
Семен Зайдес ◽  
Semen Zaides

Technological potentialities at finish-strengthening processing of low-rigid parts of shaft- and axle types with local ways of machining impact are rather limited. In the paper there are considered new ways for strengthening allowing obtaining qualitative surface strengthening in machine parts at high productivity of an engineering procedure.


Author(s):  
V.R. EDIGAROV

The technology of combined electro–mechanical–acoustic treatment is presented, which is a combination of electro–mechanical treatment and surface plastic deformation by ultrasonic treatment. Microhardness and residual stresses in strengthened EMUzO surface layer of machine parts investigated.


Author(s):  
А. Афонин ◽  
A. Afonin ◽  
Е. Мартынов ◽  
E. Martynov ◽  
А.В. Макаров ◽  
...  

The main causes of failure of heavily loaded threads are considered. The methods of increasing the efficiency of the equipment due to the method used are proposed. It is found that improving the operational characteristics of the components of mining and metallurgical machinery can be achieved forming heterogeneous-hardened surface layer. Methods of forming heterogeneous structure by surface plastic deformation (SPD are considered). The importance of identifying the nature of the influence of parameters of heterogeneous hardened layer on the performance of machine parts is indicated. Modeling of process heterogeneous hardening of SPD of the finite element method is executed. Recommendations about application of heterogeneous hardening of SPD for hardening the heavy-duty parts are offered. It is found that the use of different methods SPD allows widely vary the degree of depth and the uniformity of the hardening of machine parts. It is found that this increase in life responsible highly loaded parts operating under fatigue loading due to hardening of the heterogeneous surface layer may reach 1.5 times or more.


Author(s):  
Z. М. Оdosii ◽  
V. Ya. Shymanskyi ◽  
B. V. Pindra

The performance of the machines part reinforcement using surface plastic deformation shall be considered as formation of the whole complex of surface parameters and quality and their impact on the operational properties of these parts. The main surface quality parameters, affecting the performance of machine parts are geometric (microgeometry, wavelength, roughness, shape of inequalities, the size of the supporting surface, the direction of the traces of processing); physical parameters (structure, degree and slander depth, residual stresses in the surface layer). In the machine building, many methods of superficial plastic deformation are used for part reinforcement; these methods essentially differ in the scheme of impact of the surface deforming part to be treated. After analyzing the results obtained by scientists, involved in research on surface plastic deformation of surface layers and surfaces of parts, it was found that after hardening, practically all structural changes contribute to reinforcement of the surface layer material and increase the plastic deformation resistance. Increasing the density of dislocations and the separation of carbides, which block the shear slides and create obstacles to the movement of dislocations. Due to these changes, resistance to formation and spread of fatigue cracks have increased. The treatment depth, magnitude of residual stresses and increase in hardness depends on the original structure and chemical composition of the material. Reinforcement regimes have significant effects on the wear resistance. Use  of diamond smoothing, vibration processing, combined methods (surface plastic deformation in combination with other reinforcement methods, as well as the use of a combined tool) opens up new possibilities for increasing the quality characteristics of the surface and the surface layer of parts, and accordingly, increasing their operational properties with all the diversity and complexity of used processes. Based on the results of the studies, practical recommendations on the application of methods of hardening by surface plastic deformation of machine parts and a methodology for designing technological processes for their manufacture considering manufacturing capabilities are proposed.


Author(s):  
Angel Lengerov

The article presents experimental studies of the roughness by surface plastic deformation (SPD) on flat surfaces of steel 45. A dispersion analysis was used to study the influence of various factors on the surface quality. From the experimental studies and the dispersion analysis made, a graphical interpretation of the main effects was obtained. Graphical visualizations of the roughness pattern after SPD on the processed surfaces were obtained. Overlapping sinusoidal movements of the deforming spherical element were realized.


2020 ◽  
pp. 79-82
Author(s):  
D.YU. Belan ◽  
G.B. Toder ◽  
K.V. Averkov ◽  
YU.V. Titov

A tool was developed for smoothing the plates of an electric motor collector. An analytical dependence of the roughness parameter of the machined surface on the force applied to the tool is obtained. Keywords traction electric motor, collector, diamond burnishing tool, surface-plastic deformation, repair, roughness. [email protected]


Sign in / Sign up

Export Citation Format

Share Document