scholarly journals On the osteology and phylogenetic affinities of Morsoravis sedilis (Aves) from the early Eocene Fur Formation of Denmark

2011 ◽  
Vol 59 ◽  
pp. 23-35
Author(s):  
Gerald Mayr

Morsoravis sedilis is a small bird from the early Eocene Fur Formation of Denmark, which in the original description was considered to be most closely related to Charadriiformes. Because Morsoravis has subsequently been likened to Pumiliornis tesselatus, an equally enigmatic bird from the middle Eocene of Messel in Germany, I perform here the first phylogenetic analysis including the two taxa. This analysis supports a sister group relationship between Morsoravis and Pumiliornis, and the clade including the two taxa is recovered as the sister taxon of the late Eocene/early Oligocene Eocuculus.I report a possible, albeit lost, second specimen of Morsoravis, and identify derived characters in support of a sister group relationship between Morsoravis and Pumiliornis. The analysis did not resolve the higher-level affinities of the clade including Morsoravis, Pumiliornis, and Eocuculus, and did not confirm charadriiform affinities of Morsoravis. More data on the osteology of the fossils, as well as an improved understanding of the interrelationships of extant birds, are needed for a well-established phylogenetic assignment of these fossil taxa.

2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


2011 ◽  
Vol 4 (2) ◽  
pp. 128-142 ◽  
Author(s):  
Alexander O. Averianov

Nessovophis tamdy gen. et sp. nov. (Nigerophiidae, middle Eocene, Bartonian), Nessovophis zhylga sp. nov. (early Eocene, Ypresian), Palaeophis ferganicus sp. nov. (early Eocene, Ypresian), Palaeophis udovichenkoi sp. nov. (middle – ?late Eocene, Bartonian – ?Priabonian), Palaeophis nessovi sp. nov. (late Eocene, Priabonian), Palaeophis sp. (middle Eocene, Bartonian), and Pterosphenus muruntau sp. nov. (middle Eocene, Bartonian) are described and Vialovophis zhylan Nessov, 1984 (?latest Paleocene) is redescribed on the basis of 45 isolated vertebrae from 8 localities in Kazakhstan, Tajikistan, Kirghizia, Uzbekistan, and Ukraine. Phylogenetic analysis of 8 Cretaceous-Paleogene taxa of sea snakes reveals two monophyletic groups: Palaeophiidae (Palaeophis and Pterosphenus) and Nigerophiidae (Nigerophis, Woutersophis, and Nessovophis).


2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


1998 ◽  
Vol 11 (6) ◽  
pp. 711 ◽  
Author(s):  
Robert S. Hill ◽  
Leonie J. Scriven

A re-investigation of macrofossils previously referred to the extantpodocarpaceous genus Falcatifolium Laubenfels shows thatno records can be sustained. Falcatifolium australisD.R.Greenwood from Middle Eocene sediments in Victoria bears littleresemblance to extant species in the genus and is transferred to the newfossil genus Sigmaphyllum R.S.Hill & L.J.Scriven.Specimens from Early Oligocene sediments in Tasmania previously assigned toFalcatifolium are described as a second species ofSigmaphyllum, S. tasmanensisR.S.Hill & L.J.Scriven, and specimens from mid to late Eocene sediments inTasmania previously assigned to Falcatifolium do notbelong to that genus, although their true generic affinities are uncertain.Dispersed cuticle specimens from Late Eocene–Oligocene sediments inSouth Australia referred to Falcatifolium are notreliable records of the genus and require further investigation. However,Dacrycarpus eocenica D.R.Greenwood, from Middle Eocenesediments in Victoria is transferred to Falcatifolium,and is similar to the extant species F. angustumLaubenfels, which has a leaf morphology unusual for the genus.Falcatifolium eocenica (D.R.Greenwood) R.S.Hill & L.J.Scriven is the only reliable record of the genus in the Australian fossilrecord to date.


2015 ◽  
Vol 11 (4) ◽  
pp. 2977-3018 ◽  
Author(s):  
K. M. Pascher ◽  
C. J. Hollis ◽  
S. M. Bohaty ◽  
G. Cortese ◽  
R. M. McKay

Abstract. The Eocene was characterised by "greenhouse" climate conditions that were gradually terminated by a long-term cooling trend through the middle and late Eocene. This long-term trend was determined by several large-scale climate perturbations that culminated in a shift to "ice-house" climates at the Eocene–Oligocene Transition. Geochemical and micropaleontological proxies suggest that tropical-to-subtropical sea-surface temperatures persisted into the late Eocene in the high-latitude Southwest Pacific Ocean. Here, we present radiolarian microfossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) Sites 277, 280, 281 and 283 from the middle Eocene to early Oligocene (~ 40–33 Ma) to identify oceanographic changes in the Southwest Pacific across this major transition in Earth's climate history. The Middle Eocene Climatic Optimum at ~ 40 Ma is characterised by a negative shift in foraminiferal oxygen isotope values and a radiolarian assemblage consisting of about 5 % of low latitude taxa Amphicraspedum prolixum group and Amphymenium murrayanum. In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift can be correlated to the Priabonian Oxygen Isotope Maximum (PrOM) event – a short-lived cooling event recognized throughout the Southern Ocean. Radiolarian abundance, diversity, and preservation increase during the middle of this event at Site 277 at the same time as diatoms. The PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. These high-latitude taxa also increase in abundance during the late Eocene and early Oligocene at DSDP Sites 280, 281 and 283 and are associated with very high diatom abundance. We therefore infer a~northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau towards the end of the late Eocene. In the early Oligocene (~ 33 Ma) there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms are absent. These data indicate that, once the Tasman Gateway was fully open in the early Oligocene, a frontal system similar to the present day was established, with nutrient-depleted subantarctic waters bathing the area around DSDP Site 277, resulting in a more oligotrophic siliceous plankton assemblage.


Zootaxa ◽  
2021 ◽  
Vol 4992 (1) ◽  
pp. 1-89
Author(s):  
ADRIAN ARDILA-CAMACHO ◽  
CALEB CALIFRE MARTINS ◽  
ULRIKE ASPÖCK ◽  
ATILANO CONTRERAS-RAMOS

Adult external morphology of the extant raptorial Mantispoidea (Insecta: Neuroptera: Mantispidae and Rhachiberothidae) is compared emphasizing the morphology of the subfamily Symphrasinae as a key group to understand the phylogenetic relationships among the members of the superfamily. Plega dactylota Rehn, 1939 is thoroughly characterized in order to exemplify the morphology of the Symphrasinae. Additionally, following a review of the literature and examination of comparative material of Dilaridae, Berothidae, Rhachiberothidae and all Mantispidae subfamilies, a new interpretation of the components of the raptorial apparatus (i.e., head, prothorax, grasping forelegs, as well as integumentary specializations) is presented. Also, wing venation for these groups is reinterpreted, and new homology hypotheses for wing venation are proposed based on tracheation and comparative analyses. Given the high morphological divergence on the genital sclerites within the Mantispoidea, plus the confusing previous usage of neutral terminology and terms referring to appendages across taxonomic and morphological studies, we attempt to standardize, simplify, and situate terminology in an evolutionary context under the “gonocoxite concept” (multi-coxopod hypothesis). The remarkable morphological similarity of the genital sclerites of Symphrasinae and Rhachiberothidae (sensu U. Aspöck & Mansell 1994) with the Nallachinae (Dilaridae) was taken as a starting point to understand the morphology of other Mantispidae subfamilies. Based on these morphological comparisons, we provide a revised phylogenetic analysis of Mantispoidea. This new phylogenetic analysis supports a sister group relationship between the family Rhachiberothidae, comprising Rhachiberothinae and Symphrasinae, and the family Mantispidae, including the subfamily Mantispinae and its sister taxa Drepanicinae and Calomantispinae, which may represent a single subfamily. Based on these analyses, raptorial condition probably evolved a single time in these insects and subsequently became diversified in the two sister clades of the raptorial Mantispoidea.  


The Condor ◽  
2005 ◽  
Vol 107 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Gerald Mayr

Abstract A new taxon of the Cypselomorphae—the clade including nightjars, potoos, owlet-nightjars, and apodiform birds—is described from the middle Eocene of Messel in Germany. Phylogenetic analysis of 49 characters shows Protocypselomorphus manfredkelleri gen. et sp. nov. to be the sister group of all other cypselomorph taxa, although this placement was not robust to bootstrapping. As evidenced by its swift-like beak, long forearm, and reduced feet, P. manfredkelleri was hawking insects on the wing. Thus it adds a distinctive new taxon to the already diverse assemblage of Paleogene aerial insectivores, all of which belong to the Cypselomorphae. This strongly contrasts with the extant avifauna where many aerial insectivores belong to songbirds, and among the insectivorous cypselomorph taxa only swifts and nightjars are species rich and widely distributed. The diversity of aerial insectivores among the Cypselomorphae may have been reduced by food competition with songbirds, which do not become the dominant group of insectivorous birds before the early Miocene. Una Nueva Ave Cipselomorfa del Eoceno Medio de Alemania y la Diversificación Temprana de las Aves Insectívoras Aéreas Resumen. Se describe un nuevo taxón de Cypselomorphae, el clado que incluye a las familias Caprimulgidae, Nyctibiidae, Aegothelidae y a las aves apodiformes, del Eoceno medio de Messel en Alemania. Un análisis filogenético de 49 caracteres muestra que Protocypselomorphus manfredkelleri gen. et sp. nov. es el grupo hermano de los demás taxa de cipselomorfos, aunque esta posición no fue apoyada por el análisis de bootstrap. Como lo evidencia su pico tipo vencejo, antebrazo largo y patas pequeñas, P. manfredkelleri cazaba insectos al vuelo. Así, este hallazgo añade un nuevo taxón al grupo ya diverso de los insectívoros aéreos del Paleógeno, todos los cuales pertenecen al grupo de los cipselomorfos. Esto contrasta fuertemente con la avifauna actual, en que muchos insectívoros aéreos pertenecen al grupo de los paseriformes, mientras que de los taxa de insectívoros cipselomorfos sólo los apodiformes y caprimúlgidos presentan alta diversidad específica y se encuentran ampliamente distribuidos. La diversidad de los insectívoros aéreos en los cipselomorfos pude haberse reducido debido a la competencia por alimento con las aves paseriformes, las cuales no se transforman en el grupo dominante de aves insectívoras sino hasta el Mioceno temprano.


1998 ◽  
Vol 19 (4) ◽  
pp. 385-405 ◽  
Author(s):  
Van Wallach ◽  
Rainer Günther

AbstractThe internal anatomy of Xenophidion is described and compared with that of members of other snake families. A suite of primitive characters eliminates Xenophidion as a possible member of the Caenophidia; only two characters could conceivably suggest a relationship to the Caenophidia and both are examples of losses and thus of low phylogenetic value in assessing relationships. However, among lower snakes a sister group relationship is demonstrated with the Tropidophiidae of the Neotropical region. Besides possessing nearly identical viscera and topographical arrangement thereof, Xenophidion shares several characters with the Tropidophiidae. A new family is created to contain the genus, the Xenophidiidae. The Xenophidiidae share one synapomorphy with both the Tropidophiidae and Bolyeriidae. Therefore, it is proposed that these three families be united in the superfamily Tropidophioidea. A phylogenetic analysis of 52 characters results in the following preferred hypothesis of relationships: (Boinae, (((Bolyeria, Casarea), (Xenophidion, ((Exiliboa, Ungaliophis), (Trachyboa, Tropidophis)))), Acrochordus)).


Sign in / Sign up

Export Citation Format

Share Document