scholarly journals Characterization and application of nitrogen-fixing and indole-3-acetic acid producing bacteria A13 in Oil Palm (Elaeisguineensis Jacq.) seedling

2021 ◽  
Vol 3 (1) ◽  
pp. 32-40
Author(s):  
Ismi Isti'anah ◽  
Nisa Mubarik Rachmania ◽  
Aris Tjahjoleksono

Oil palm plantations have a good prospect in Indonesia. One of the efforts to improve the productivity of oil palm plantation is the application of bacteria as biological fertilizer. The research was conducted to characterize and apply the nitrogen-fixing and indole-3-acetic acid producing bacteria in oil palm seedlings. The bacteria was isolated from soil samples which taken from Taman Nasional Bukit Dua Belas (TNBD) Jambi. Nitrogen free bromthymol blue (NFB) is used as media for nitrogen-fixing bacterial isolation. Selected isolate named A13 had an ability to form white pellicle on the surface of the semisolid medium, increased the pH, and changed the color of medium from green to blue Isolate A13 was identified as Gram-negative bacteria and had a rods shape. Analysis of 16S rRNA gene sequence showed that isolate A13 had a similarity with Pseudochrobactrum assacharolyticum. Hypersensitivity assay on tobacco leaves showed that isolate A13 was not a pathogen. During 48 hours of incubation, isolate A13 produced a maximum of IAA at the 24th hour of incubation. Isolate A13 produced 0.675 ppm of ethylene/hour in Acetylene Reduction Assay and 69,839 ppm of IAA in HPLC methods. This was the first report on nitrogen fixation and IAA production by Pseudochrobactrum assacharolyticum and its application in the soil of oil palm seedlings. Application of isolate A13 in oil palm seedling increased significantly the number of lateral roots, stem diameter, and height of plants

2020 ◽  
Author(s):  
Bi-Xian Zhang ◽  
Ying-Ying Wang ◽  
Xiaomei Hu

Abstract Background: Indole-3-acetic acid (IAA) plays an important role in the growth and development of plants. Various bacteria in the rhizosphere are capable to produce IAA that acts as a signaling molecule for the communication between plants and microbes to promote the plant growth. Due to the low IAA content and various interfering analogs, it is difficult to detect and isolate IAA from microbial secondary metabolites. Results: A predominant strain with a remarkable capability to secrete IAA was identified as Enterobacter xiangfangensis BHW6 based on 16S rRNA gene sequence, the determination of average nucleotide identity (ANI) and digital DDH (dDDH). The maximum IAA content (134-1129 μg/mL) was found with the addition of 0.2-15 g/L of L-tryptophan at pH 5 for 6 days, which was 4-40 fold higher than that in the absence of L-tryptophan. The highest yield of IAA was obtained at the stationary phase of bacterial growth. An acidic culture medium was preferred for the IAA biosynthesis of the strain. The strain was tolerant and stable to produce IAA in the presence 2.5%-5% (w/v) of NaCl. IAA was then isolated through column chromatography with a mobile phase of hexane/ethyl acetate (1/2, v/v) and characterized by 1H Nuclear Magnetic Resonance (1H NMR). Conclusions: A remarkable IAA production was obtained from E. xiangfangensis BHW6 that was tryptophan–dependent. According to genomic analysis, the ipdC gene coding for the key enzyme (indole-3-pyruvate decarboxylase) was identified indicating that IAA biosynthesis was mainly through the indole-3-pyruvia acid (IPyA) pathway, which was further confirmed by intermediate assay. E. xiangfangensis BHW6 with an important economic value has great prospect in agricultural and industrial application.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Pankaj Kumar Arora ◽  
Kartik Dhar ◽  
Rafael Alejandro Veloz García ◽  
Ashutosh Sharma

An indole-biotransforming strain MA was identified asLysinibacillus xylanilyticuson the basis of the 16S rRNA gene sequencing. It transforms indole completely from the broth culture in the presence of an additional carbon source (i.e., sodium succinate). Gas-chromatography-mass spectrometry identified indole-3-acetamide, indole-3-acetic acid, and 3-methylindole as transformation products. Tryptophan-2-monooxygenase activity was detected in the crude extracts of indole-induced cells of strain MA, which confirms the formation of indole-3-acetamide from tryptophan in the degradation pathway of indole. On the basis of identified metabolites and enzyme assay, we have proposed a new transformation pathway for indole degradation. Indole was first transformed to indole-3-acetamide via tryptophan. Indole-3-acetamide was then transformed to indole-3-acetic acid that was decarboxylated to 3-methylindole. This is the first report of a 3-methylindole synthesis via the degradation pathway of indole.


2021 ◽  
Vol 22 (5) ◽  
pp. 2651
Author(s):  
Linda Jahn ◽  
Uta Hofmann ◽  
Jutta Ludwig-Müller

The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.


2014 ◽  
Vol 173 (8) ◽  
pp. 1977-1984 ◽  
Author(s):  
Christopher E. Bagwell ◽  
Magdalena Piskorska ◽  
Tanya Soule ◽  
Angela Petelos ◽  
Chris M. Yeager

2019 ◽  
Vol 13 (4) ◽  
pp. 603-611 ◽  
Author(s):  
Somayeh Emami ◽  
Hossein Ali Alikhani ◽  
Ahmad Ali Pourbabaei ◽  
Hassan Etesami ◽  
Fereydoon Sarmadian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document