scholarly journals Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

2021 ◽  
Vol 12 ◽  
pp. 35-48
Author(s):  
Cynthia Kembuan ◽  
Helena Oliveira ◽  
Christina Graf

Upconversion nanoparticles (UCNPs), consisting of NaYF4 doped with 18% Yb and 2% Er, were coated with microporous silica shells with thickness values of 7 ± 2 and 21 ± 3 nm. Subsequently, the negatively charged particles were functionalized with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane (AHAPS), which provide a positive charge to the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that, over the course of 24h, particles with thicker shells release fewer lanthanide ions than particles with thinner shells. However, even a 21 ± 3 nm thick silica layer does not entirely block the disintegration process of the UCNPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and cell cytometry measurements performed on macrophages (RAW 264.7 cells) indicate that cells treated with amino-functionalized particles with a thicker silica shell have a higher viability than those incubated with UCNPs with a thinner silica shell, even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. Cell cycle analyses with amino-functionalized particles also confirm that thicker silica shells reduce cytotoxicity. Thus, growing silica shells to a sufficient thickness is a simple approach to minimize the cytotoxicity of UCNPs.

2020 ◽  
Author(s):  
Cynthia E Kembuan ◽  
Helena Oliveira ◽  
Christina Graf

Upconversion nanoparticles (UCNP) consisting of NaYF₄ doped with 18% Yb and 2% Er were coated with microporous silica shells of 7±2 nm and 21±3 nm thickness. Subsequently, the initially negatively charged particles were optionally functionalized with N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS), providing a positive charge onto the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that the particles with the thicker shells release fewer lanthanide ions in 24 h than particles with a thinner shell but that even a 21±3 nm thick silica layer does not entirely block the disintegration process of the UCNP. MTT tests and cell cytometry measurements with macrophages (RAW 264.7 cells) indicate that the cells treated with amino-functionalized particles with a thicker silica shell have higher viability than those incubated with UCNP with a thinner silica shell even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. A cell cycle analysis with amino-functionalized particles also confirms that a thicker silica shell reduces the cytotoxicity. Thus, growing silica shells of sufficient thickness is a simple approach to minimize the cytotoxicity of UCNP.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Sign in / Sign up

Export Citation Format

Share Document