scholarly journals Cantilever signature of tip detachment during contact resonance AFM

2021 ◽  
Vol 12 ◽  
pp. 1286-1296
Author(s):  
Devin Kalafut ◽  
Ryan Wagner ◽  
Maria Jose Cadena ◽  
Anil Bajaj ◽  
Arvind Raman

Contact resonance atomic force microscopy, piezoresponse force microscopy, and electrochemical strain microscopy are atomic force microscopy modes in which the cantilever is held in contact with the sample at a constant average force while monitoring the cantilever motion under the influence of a small, superimposed vibrational signal. Though these modes depend on permanent contact, there is a lack of detailed analysis on how the cantilever motion evolves when this essential condition is violated. This is not an uncommon occurrence since higher operating amplitudes tend to yield better signal-to-noise ratio, so users may inadvertently reduce their experimental accuracy by inducing tip–sample detachment in an effort to improve their measurements. We shed light on this issue by deliberately pushing both our experimental equipment and numerical simulations to the point of tip–sample detachment to explore cantilever dynamics during a useful and observable threshold feature in the measured response. Numerical simulations of the analytical model allow for extended insight into cantilever dynamics such as full-length deflection and slope behavior, which can be challenging or unobtainable in a standard equipment configuration. With such tools, we are able to determine the cantilever motion during detachment and connect the qualitative and quantitative behavior to experimental features.

2018 ◽  
Vol 113 (8) ◽  
pp. 083102
Author(s):  
C. Ma ◽  
V. Pfahl ◽  
Z. Wang ◽  
Y. Chen ◽  
J. Chu ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 014503 ◽  
Author(s):  
Matteo Aureli ◽  
Syed N. Ahsan ◽  
Rafiul H. Shihab ◽  
Ryan C. Tung

2018 ◽  
Vol 9 ◽  
pp. 945-952 ◽  
Author(s):  
Christopher C Glover ◽  
Jason P Killgore ◽  
Ryan C Tung

This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of this phenomenon is necessary to conduct accurate quantitative imaging using contact-resonance AFM, and other contact-mode AFM techniques, at higher scan speeds. A squeeze film hydrodynamic theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data.


2004 ◽  
Vol 286 (1) ◽  
pp. H359-H367 ◽  
Author(s):  
Xiaohui Zhang ◽  
Aileen Chen ◽  
Dina De Leon ◽  
Hong Li ◽  
Eisei Noiri ◽  
...  

Leukocyte adhesion to vascular endothelium is a key initiating step in the pathogenesis of many inflammatory diseases. In this study, we present real-time force measurements of the interaction between monocytic human promyelocytic leukemia cells (HL-60) cells and a monolayer of human umbilical vein endothelial cells (HUVECs) by using atomic force microscopy (AFM). The detachment of HL-60-HUVEC conjugates involved a series of rupture events with force transitions of 40–100 pN. The integrated force of these rupture events provided a quantitative measure of the adhesion strength on a whole cell level. The AFM measurements revealed that HL-60 adhesion is heightened in the borders formed by adjacent HUVECs. The average force and mechanical work required to detach a single HL-60 from the borders of a tumor necrosis factor-α-activated HUVEC layer were twice as high as those of the HUVEC bodies. HL-60 adhesion to the monolayer was significantly reduced by a monoclonal antibody against β1-integrins and partially inhibited by antibodies against selectins ICAM-1 and VCAM-1 but was not affected by anti-αVβ3. Interestingly, adhesion was also inhibited in a dose-dependent manner (IC50≈ 100 nM) by a cyclic arginine-glycine-aspartic acid (cRGD) peptide. This effect was mediated via interfering with the VLA-4-VCAM-1 binding. In parallel measurements, transmigration of HL-60 cells across a confluent HUVEC monolayer was inhibited by the cRGD peptide and by both anti-β1and anti-αVβ3antibodies. In conclusion, these data demonstrate the role played by β1-integrins in leukocyte-endothelial adhesion and transmigration and the role played by αVβ3in transmigration, thus underscoring the high efficacy of cRGD peptide in blocking both the adhesion and transmigration of monocytes.


Author(s):  
Matteo Aureli ◽  
Ryan Tung

Abstract In this paper, we present a new contact resonance atomic force microscopy based method utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample properties. A theoretical derivation, based on Rayleigh-Ritz method and on an “unconventional” generalized eigenvalue problem, is presented and a numerical experiment is devised to verify the method. We present an updated sensitivity criterion that allows users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to select the best eigenfrequency for accurate data estimation. The verification results are then presented and discussed. Results show that the proposed method performs extremely well in the identification of viscoelastic properties over broad ranges of non-dimensional sample stiffness and damping values.


2019 ◽  
Vol 10 ◽  
pp. 1636-1647 ◽  
Author(s):  
Wenting Wang ◽  
Chengfu Ma ◽  
Yuhang Chen ◽  
Lei Zheng ◽  
Huarong Liu ◽  
...  

Subsurface imaging of Au circuit structures embedded in poly(methyl methacrylate) (PMMA) thin films with a cover thickness ranging from 52 to 653 nm was carried out by using contact resonance atomic force microscopy (CR-AFM). The mechanical difference of the embedded metal layer leads to an obvious CR-AFM frequency shift and therefore its unambiguous differentiation from the polymer matrix. The contact stiffness contrast, determined from the tracked frequency images, was employed for quantitative evaluation. The influence of various parameter settings and sample properties was systematically investigated by combining experimental results with theoretical analysis from finite element simulations. The results show that imaging with a softer cantilever and a lower eigenmode will improve the subsurface contrast. The experimental results and theoretical calculations provide a guide to optimizing parameter settings for the nondestructive diagnosis of flexible circuits. Defect detection of the embedded circuit pattern was also carried out, which indicates the capability of imaging tiny subsurface structures smaller than 100 nm by using CR-AFM.


2020 ◽  
Vol 117 (2) ◽  
pp. 023103
Author(s):  
Wenting Wang ◽  
Chengfu Ma ◽  
Yuhang Chen

ACS Nano ◽  
2016 ◽  
Vol 10 (7) ◽  
pp. 6491-6500 ◽  
Author(s):  
Qing Tu ◽  
Björn Lange ◽  
Zehra Parlak ◽  
Joao Marcelo J. Lopes ◽  
Volker Blum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document