A Plate-Like Sensor for the Identification of Sample Viscoelastic Properties Using Contact Resonance Atomic Force Microscopy

Author(s):  
Matteo Aureli ◽  
Ryan Tung

Abstract In this paper, we present a new contact resonance atomic force microscopy based method utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample properties. A theoretical derivation, based on Rayleigh-Ritz method and on an “unconventional” generalized eigenvalue problem, is presented and a numerical experiment is devised to verify the method. We present an updated sensitivity criterion that allows users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to select the best eigenfrequency for accurate data estimation. The verification results are then presented and discussed. Results show that the proposed method performs extremely well in the identification of viscoelastic properties over broad ranges of non-dimensional sample stiffness and damping values.

2013 ◽  
Vol 21 (6) ◽  
pp. 18-24 ◽  
Author(s):  
Eoghan Dillon ◽  
Kevin Kjoller ◽  
Craig Prater

Atomic force microscopy (AFM) has been widely used in both industry and academia for imaging the surface topography of a material with nanoscale resolution. However, often little other information is obtained. Contact resonance AFM (CR-AFM) is a technique that can provide information about the viscoelastic properties of a material in contact with an AFM probe by measuring the contact stiffness between the probe and sample. In CR-AFM, an AFM cantilever is oscillated, and the amplitude and frequency of the resonance modes of the cantilever are monitored. When a probe or sample is oscillated, the tip sample interaction can be approximated as an ideal spring-dashpot system using the Voigt-Kelvin model shown in Figure 1. Contact resonance frequencies of the AFM cantilever will shift depending on the contact stiffness, k, between the tip and sample. The damping effect on the system comes from dissipative tip sample forces such as viscosity and adhesion. Damping, η, is observed in a CR-AFM system by monitoring the amplitude and Q factor of the resonant modes of the cantilever. This contact stiffness and damping information can then be used to obtain information about the viscoelastic properties of the material when fit to an applicable model.


2008 ◽  
Vol 48 (supplement) ◽  
pp. S175
Author(s):  
Shinichiro Hiratsuka ◽  
Yusuke Mizutani ◽  
Masahiro Tsuchiya ◽  
Koichi Kawahara ◽  
Hiroshi Tokumoto ◽  
...  

2018 ◽  
Vol 113 (8) ◽  
pp. 083102
Author(s):  
C. Ma ◽  
V. Pfahl ◽  
Z. Wang ◽  
Y. Chen ◽  
J. Chu ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 014503 ◽  
Author(s):  
Matteo Aureli ◽  
Syed N. Ahsan ◽  
Rafiul H. Shihab ◽  
Ryan C. Tung

2019 ◽  
Vol 19 (3) ◽  
pp. 801-813 ◽  
Author(s):  
Maricela Rodríguez-Nieto ◽  
Priscila Mendoza-Flores ◽  
David García-Ortiz ◽  
Luis M. Montes-de-Oca ◽  
Marco Mendoza-Villa ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 945-952 ◽  
Author(s):  
Christopher C Glover ◽  
Jason P Killgore ◽  
Ryan C Tung

This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of this phenomenon is necessary to conduct accurate quantitative imaging using contact-resonance AFM, and other contact-mode AFM techniques, at higher scan speeds. A squeeze film hydrodynamic theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data.


Sign in / Sign up

Export Citation Format

Share Document