scholarly journals Neutral and charged boron-doped fullerenes for CO2 adsorption

2014 ◽  
Vol 5 ◽  
pp. 413-418 ◽  
Author(s):  
Suchitra W de Silva ◽  
Aijun Du ◽  
Wijitha Senadeera ◽  
Yuantong Gu

Recently, the capture and storage of CO2 have attracted research interest as a strategy to reduce the global emissions of greenhouse gases. It is crucial to find suitable materials to achieve an efficient CO2 capture. Here we report our study of CO2 adsorption on boron-doped C60 fullerene in the neutral state and in the 1e −-charged state. We use first principle density functional calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC59 cage in its neutral state and the interactions can be enhanced significantly by introducing an extra electron to the system.

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Xiaoyan Liu ◽  
Lei Wang ◽  
Yi Tong

First-principle density functional theory simulations have been performed to predict the electronic structures and optoelectronic properties of ultrathin indium tin oxide (ITO) films, having different thicknesses and temperatures. Our results and analysis led us to predict that the physical properties of ultrathin films of ITO have a direct relation with film thickness rather than temperature. Moreover, we found that a thin film of ITO (1 nm thickness) has a larger absorption coefficient, lower reflectivity, and higher transmittance in the visible light region compared with that of 2 and 3 nm thick ITO films. We suggest that this might be due to the stronger surface strain effect in 1 nm thick ITO film. On the other hand, all three thin films produce similar optical spectra. Finally, excellent agreement was found between the calculated electrical resistivities of the ultrathin film of ITO and that of its experimental data. It is concluded that the electrical resistivities reduce along with the increase in film thickness of ITO because of the short strain length and limited bandgap distributions.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Raquel Álvarez-Vidaurre ◽  
Alfonso Castiñeiras ◽  
Antonio Frontera ◽  
Isabel García-Santos ◽  
Diego M. Gil ◽  
...  

This work deals with the preparation of pyridine-3-carbohydrazide (isoniazid, inh) cocrystals with two α-hydroxycarboxylic acids. The interaction of glycolic acid (H2ga) or d,l-mandelic acid (H2ma) resulted in the formation of cocrystals or salts of composition (inh)·(H2ga) (1) and [Hinh]+[Hma]–·(H2ma) (2) when reacted with isoniazid. An N′-(propan-2-ylidene)isonicotinic hydrazide hemihydrate, (pinh)·1/2(H2O) (3), was also prepared by condensation of isoniazid with acetone in the presence of glycolic acid. These prepared compounds were well characterized by elemental analysis, and spectroscopic methods, and their three-dimensional molecular structure was determined by single crystal X-ray crystallography. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and its derivatives. The remaining hydrogen-bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems. Finally, Hirshfeld surface analysis and Density-functional theory (DFT) calculations (including NCIplot and QTAIM analyses) have been performed to further characterize and rationalize the non-covalent interactions.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


2011 ◽  
Vol 257 (17) ◽  
pp. 7443-7446 ◽  
Author(s):  
Shuanghong Gao ◽  
Zhaoyu Ren ◽  
Lijuan Wan ◽  
Jiming Zheng ◽  
Ping Guo ◽  
...  

2015 ◽  
Vol 14 (03) ◽  
pp. 1550020 ◽  
Author(s):  
Yuan Yuan ◽  
Wei Hu ◽  
Xuhui Chi ◽  
Cuihua Li ◽  
Dayong Gui ◽  
...  

The oxidation mechanism of diethyl ethers by NO2was carried out using density functional theory (DFT) at the B3LYP/6-31+G (d, p) level. The oxidation process of ether follows four steps. First, the diethyl ether reacts with NO2to produce HNO2and diethyl ether radical with an energy barrier of 20.62 kcal ⋅ mol-1. Then, the diethyl ether radical formed in the first step directly combines with NO2to form CH3CH ( ONO ) OCH2CH3. In the third step, the CH3CH ( ONO ) OCH2CH3was further decomposed into the CH3CH2ONO and CH3CHO with a moderately high energy barrier of 32.87 kcal ⋅ mol-1. Finally, the CH3CH2ONO continues to react with NO2to yield CH3CHO , HNO2and NO with an energy barrier of 28.13 kcal ⋅ mol-1. The calculated oxidation mechanism agrees well with Nishiguchi and Okamoto's experiment and proposal.


2015 ◽  
Vol 33 (2) ◽  
pp. 251-258
Author(s):  
Bendouma Doumi ◽  
Allel Mokaddem ◽  
Mustapha Ishak-Boushaki ◽  
Miloud Boutaleb ◽  
Abdelkader Tadjer

AbstractIn the present work, we have investigated the structural and electronic properties of TMAl (TM = Fe, Co, and Ni) transition metal aluminides in the B2 structure, using first-principle calculations of the density functional theory (DFT) based on the linearized augmented plane wave method (FP-LAPW) as implemented in the WIEN2k code, in which the energy of exchange and correlation are treated by the generalized gradient approximation (GGA), proposed in 1996 by Perdew, Burke and Ernzerhof (PBE). The ground state properties have been calculated and compared with other calculations, and the electronic structures of all FeAl, CoAl, and NiAl compounds exhibited a metallic behavior. It was depicted that the density of states is characterized by the large hybridization between the s-p (Al) and 3d (Fe, Co, and Ni) states, which creates the pseudogap in the region of anti-bonding states. Moreover, the band structures of FeAl, CoAl, and NiAl are similar to each other and the difference between them is in the energy level of each band relative to the Fermi level.


Open Physics ◽  
2013 ◽  
Vol 11 (11) ◽  
Author(s):  
Alexander Rusakov ◽  
Yuriy Demidov ◽  
Andréi Zaitsevskii

AbstractWe report first-principle based studies of element 113 (E113) interactions with gold aimed primarily at estimating the adsorption energy in thermochromatographic experiments. The electronic structure of E113-Aun systems was treated within the accurate shape-consistent small core relativistic pseudopotential framework at the level of non-collinear relativistic density functional theory (RDFT) with specially optimised Gaussian basis sets. We used gold clusters with up to 58 atoms to simulate the adsorption site on the stable Au(111) surface. Stabilization of the E113-Aun binding energy and the net Bader charge of E113 and the neighboring Au atoms with respect to n indicated the cluster size used was appropriate. The resulting adsorption energy estimates lie within the 1.0–1.2 eV range, substantially lower than previously reported values.


Sign in / Sign up

Export Citation Format

Share Document