scholarly journals Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

2018 ◽  
Vol 9 ◽  
pp. 2674-2683 ◽  
Author(s):  
Jérémy Butet ◽  
Gabriel D Bernasconi ◽  
Olivier J F Martin

The silencing of the second harmonic generation process from plasmonic nanostructures corresponds to the limited far-field second harmonic radiation despite the huge fundamental electric field enhancement in the interstice between two plasmonic nanoparticles forming a nanodimer. In this article, we report a comprehensive investigation of this effect using a surface integral equation method. Various geometries are considered, including nanoantennas with cylindrical and rectangular arms as well as nanodimers with surface defects. The existence of the silencing of the second harmonic generation from plasmonic nanogaps is first confirmed, and the problem of the origin of the second harmonic light from these plasmonic nanostructures is addressed in detail. Our results show that the distribution of the second harmonic sources, especially on the arm sides, plays a non-negligible role in the overall second harmonic emission. This contribution is induced by retardation effects at the pump wavelength and results in a dipolar second harmonic emission.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2394
Author(s):  
Alejandro Gómez-Tornero ◽  
Luisa E. Bausá ◽  
Mariola O. Ramírez

The association of plasmonic nanostructures with nonlinear dielectric systems has been shown to provide useful platforms for boosting frequency conversion processes at metal-dielectric interfaces. Here, we report on an efficient route for engineering light–matter interaction processes in hybrid plasmonic-χ(2) dielectric systems to enhance second harmonic generation (SHG) processes confined in small spatial regions. By means of ferroelectric lithography, we have fabricated scalable micrometric arrangements of interacting silver nanoparticles compactly distributed on hexagonal regions. The fabricated polygonal microstructures support both localized and extended plasmonic modes, providing large spatial regions of field enhancement at the optical frequencies involved in the SHG process. We experimentally demonstrate that the resonant excitation of the plasmonic modes supported by the Ag nanoparticle-filled hexagons in the near infrared region produces an extraordinary 104-fold enhancement of the blue second harmonic intensity generated in the surface of a LiNbO3 crystal. The results open new perspectives for the design of efficient hybrid plasmonic frequency converters in miniaturized devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guang-Can Li ◽  
Dangyuan Lei ◽  
Meng Qiu ◽  
Wei Jin ◽  
Sheng Lan ◽  
...  

AbstractEfficient frequency up-conversion of coherent light at the nanoscale is highly demanded for a variety of modern photonic applications, but it remains challenging in nanophotonics. Surface second-order nonlinearity of noble metals can be significantly boosted up by plasmon-induced field enhancement, however the related far-field second-harmonic generation (SHG) may also be quenched in highly symmetric plasmonic nanostructures despite huge near-field amplification. Here, we demonstrate that the SHG from a single gold nanosphere is significantly enhanced when tightly coupled to a metal film, even in the absence of a plasmon resonance at the SH frequency. The light-induced electromagnetic asymmetry in the nanogap junction efficiently suppresses the cancelling of locally generated SHG fields and the SH emission is further amplified through preferential coupling to the bright, bonding dipolar resonance mode of the nanocavity. The far-field SHG conversion efficiency of up to $$3.56\times 10^{-7}$$ 3.56 × 1 0 − 7 W−1 is demonstrated from a single gold nanosphere of 100 nm diameter, two orders of magnitude higher than for complex double-resonant plasmonic nanostructures. Such highly efficient SHG from a metal nanocavity also constitutes an ultrasensitive nonlinear nanoprobe to map the distribution of longitudinal vectorial light fields in nanophotonic systems.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850003 ◽  
Author(s):  
Mohamadreza Soltani

Here, we propose a novel plasmonic structure, called asymmetric plasmonic nanocavity grating (APNCG), which is shown to dramatically enhance nonlinear optical process of second harmonic generation (SHG). The proposed structure consists of two different metals on both sides of lithium niobate and a thin layer of graphene. By using two different metals the nonlinear susceptibility of the waveguide would be increased noticeably causing to increase SHG. On the other hand, it consists of two identical gratings on one side. By two identical gratings, the pump beam is coupled to two opposing SPP waves, which interfere with each other and result in SPP standing wave in the region between the two gratings. The distance between two gratings will be optimized to reach the highest SHG. It will be shown that by optimizing the geometry of proposed structure and using different metals, field enhancement in APNCG waveguides can result in large enhancement of SHG.


2011 ◽  
Vol 284 (5) ◽  
pp. 1401-1404 ◽  
Author(s):  
Michaël Delqué ◽  
Gil Fanjoux ◽  
Simon-Pierre Gorza ◽  
Marc Haelterman

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 848 ◽  
Author(s):  
Kanta Mochizuki ◽  
Mako Sugiura ◽  
Hirofumi Yogo ◽  
Stefan Lundgaard ◽  
Jingwen Hu ◽  
...  

Metasurfaces of gold (Au) nanoparticles on a SiO2-Si substrate were fabricated for the enhancement of second harmonic generation (SHG) using electron beam lithography and lift-off. Triangular Au nanoprisms which are non-centro-symmetric and support second-order nonlinearity were examined for SHG. The thickness of the SiO2 spacer is shown to be an effective parameter to tune for maximising SHG. Electrical field enhancement at the fundamental wavelength was shown to define the SHG intensity. Numerical modeling of light enhancement was verified by experimental measurements of SHG and reflectivity spectra at the normal incidence. At the plasmonic resonance, SHG is enhanced up to ∼3.5 × 103 times for the optimised conditions.


Sign in / Sign up

Export Citation Format

Share Document