scholarly journals Photoswitchable precision glycooligomers and their lectin binding

2014 ◽  
Vol 10 ◽  
pp. 1603-1612 ◽  
Author(s):  
Daniela Ponader ◽  
Sinaida Igde ◽  
Marko Wehle ◽  
Katharina Märker ◽  
Mark Santer ◽  
...  

The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors. These stimuli-sensitive glycoligands promote the understanding of multivalent binding and will be further developed as novel biosensors.

2021 ◽  
Author(s):  
Alexander Banger ◽  
Julian Sindram ◽  
Marius Otten ◽  
Jessica Kania ◽  
Alexander Strzelczyk ◽  
...  

We present the synthesis of so called amphiphilic glycomacromolecules (APGs) by using solid-phase polymer synthesis. Based on tailor made building blocks, monosdisperse APGs with varying compositions are synthesized, introducing carbohydrate...


Author(s):  
luis camacho III ◽  
Bryan J. Lampkin ◽  
Brett VanVeller

We describe a method to protect the sensitive stereochemistry of the thioamide—in analogy to the protection of the functional groups of amino acid side chains—in order to preserve the thioamide moiety during peptide elongation.<br>


2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


2001 ◽  
Vol 66 (8) ◽  
pp. 1299-1314 ◽  
Author(s):  
Michal Lebl ◽  
Christine Burger ◽  
Brett Ellman ◽  
David Heiner ◽  
Georges Ibrahim ◽  
...  

Design and construction of automated synthesizers using the tilted plate centrifugation technology is described. Wash solutions and reagents common to all synthesized species are delivered automatically through a 96-channel distributor connected to a gear pump through two four-port selector valves. Building blocks and other specific reagents are delivered automatically through banks of solenoid valves, positioned over the individual wells of the microtiterplate. These instruments have the following capabilities: Parallel solid-phase oligonucleotide synthesis in the wells of polypropylene microtiter plates, which are slightly tilted down towards the center of rotation, thus generating a pocket in each well, in which the solid support is collected during centrifugation, while the liquid is expelled from the wells. Eight microtiterplates are processed simultaneously, providing thus a synthesizer with a capacity of 768 parallel syntheses. The instruments are capable of unattended continuous operation, providing thus a capacity of over two millions 20-mer oligonucleotides in a year.


2021 ◽  
Vol 22 (11) ◽  
pp. 6000
Author(s):  
Sara Bertuzzi ◽  
Ana Gimeno ◽  
Ane Martinez-Castillo ◽  
Marta G. Lete ◽  
Sandra Delgado ◽  
...  

The interaction of multi-LacNAc (Galβ1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.


2005 ◽  
Vol 7 (4) ◽  
pp. 597-600 ◽  
Author(s):  
Fernando Albericio ◽  
Klaus Burger ◽  
Javier Ruíz-Rodríguez ◽  
Jan Spengler

2018 ◽  
Vol 75 (1) ◽  
pp. e60 ◽  
Author(s):  
Ruth Suchsland ◽  
Bettina Appel ◽  
Sabine Müller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document