Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage

2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1842
Author(s):  
Felix Zellmann ◽  
Michael W. Göbel

The RNA cleaving catalyst tris(2-aminobenzimidazole) when attached to the 5’ terminus of oligonucleotides cuts complementary RNA strands in a highly site-specific manner. Conjugation was previously achieved by the acylation of an amino linker by an active ester of the catalyst. However, this procedure was low yielding and not reliable. Here, a phosphoramidite building block is described that can be coupled to oligonucleotides by manual solid phase synthesis in total yields around 85%. Based on this chemistry, we have now studied the impact of LNA (locked nucleic acids) nucleotides on the rates and the site-specificities of RNA cleaving conjugates. The highest reaction rates and the most precise cuts can be expected when the catalyst is attached to a strong 5’ closing base pair and when the oligonucleotide contains several LNA units that are equally distributed in the strand. However, when placed in the 5’ position, LNA building blocks tend to diminish the specificity of RNA cleavage.


2021 ◽  
pp. 32-37
Author(s):  
Igor Karpov ◽  
◽  
Anatoly Ushakov ◽  
Leonid Fedorov ◽  
Lylya Irtyugo ◽  
...  

The possibility of synthesizing HTSC ceramics in the reaction chamber of a plasma-chemical reactor is shown. The method allows one to significantly reduce the process of solid-phase synthesis and obtain modified HTSC ceramics with a given content of non-superconducting additives that act as pinning centers.


2020 ◽  
Vol 21 (14) ◽  
pp. 5127
Author(s):  
Olga A. Krasheninina ◽  
Veniamin S. Fishman ◽  
Alexander A. Lomzov ◽  
Alexey V. Ustinov ◽  
Alya G. Venyaminova

We report a universal straightforward strategy for the chemical synthesis of modified oligoribonucleotides containing functional groups of different structures at the 2′ position of ribose. The on-column synthetic concept is based on the incorporation of two types of commercial nucleotide phosphoramidites containing orthogonal 2′-O-protecting groups, namely 2′-O-thiomorpholine-carbothioate (TC, as “permanent”) and 2′-O-tert-butyl(dimethyl)silyl (tBDMS, as “temporary”), to RNA during solid-phase synthesis. Subsequently, the support-bound RNA undergoes selective deprotection and follows postsynthetic 2′ functionalization of the naked hydroxyl group. This convenient method to tailor RNA, utilizing the advantages of solid phase approaches, gives an opportunity to introduce site-specifically a wide range of linkers and functional groups. By this strategy, a series of RNAs containing diverse 2′ functionalities were synthesized and studied with respect to their physicochemical properties.


2019 ◽  
Vol 41 (2) ◽  
pp. 1900473
Author(s):  
Fadi Shamout ◽  
Lukas Fischer ◽  
Nicole L. Snyder ◽  
Laura Hartmann

2013 ◽  
Vol 49 (51) ◽  
pp. 5784 ◽  
Author(s):  
Adela Ya-Ting Huang ◽  
Ching-Hua Tsai ◽  
Hsing-Yin Chen ◽  
Hui-Ting Chen ◽  
Chi-Yu Lu ◽  
...  

1989 ◽  
Vol 67 (5) ◽  
pp. 831-839 ◽  
Author(s):  
Masad José Damha ◽  
Nassim Usman ◽  
Kelvin Kenneth Ogilvie

A fast and convenient procedure for the chemical synthesis of arabinonucleotides, which eliminates the multistep protection of the arabinonucleoside building blocks, is described. The results of these studies were successfully applied to the automated chemical synthesis of the hexanucleotide 5′-aUpaApaUpaApaUpaA-3′. Both solution and solid phase phosphite triester procedures are described. Keywords: arabinonucleotides, arabinophosphoramidites, automated chemical synthesis, protected arabinonucleosides.


Sign in / Sign up

Export Citation Format

Share Document