scholarly journals Grubbs–Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids

2015 ◽  
Vol 11 ◽  
pp. 1632-1638 ◽  
Author(s):  
Maximilian Koy ◽  
Hagen J Altmann ◽  
Benjamin Autenrieth ◽  
Wolfgang Frey ◽  
Michael R Buchmeiser

The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH–2-(2-PrO)-C6H4))2+ (OTf−)2] (Ru-2, H2ITapMe2 = 1,3-bis(2’,6’-dimethyl-4’-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf− = CF3SO3 −) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM+][BF4 −]. The structure of Ru-2 was confirmed by single crystal X-ray analysis.

2018 ◽  
Vol 22 (07) ◽  
pp. 562-572
Author(s):  
Ruoshi Li ◽  
Matthias Zeller ◽  
Christian Brückner

We describe the oxidative ring opening of octaethyl-2-oxochlorin using two different oxidation methods, both providing a mixture of all possible regioisomeric products (8-[Formula: see text] through 8-[Formula: see text]. While isomers 8-[Formula: see text], 8-[Formula: see text], and 8-[Formula: see text] formed in isolable yields and relative ratios that varied with the oxidation method used, isomer 8-[Formula: see text] was invariably formed in trace amounts only. The three major products were spectroscopically characterized (IR, MS, 1D- and 2D NMR spectroscopy) and their configurations were deduced by NMR spectroscopy. The spectroscopic findings correlated well with the single crystal X-ray structure of the novel cleavage product 8-[Formula: see text] and the known compound of 8-[Formula: see text]. The work broadens the number of octaethylporphyrin-derived biliverdin derivatives available and presents a methodology of controlling the biliverdin backbone configuration by introduction of a [Formula: see text]-ketone functionality into select positions.


2018 ◽  
Vol 51 (22) ◽  
pp. 9088-9096 ◽  
Author(s):  
Chunyang Zhu ◽  
Xiaowei Wu ◽  
Olena Zenkina ◽  
Matthew T. Zamora ◽  
Karen Moffat ◽  
...  

1979 ◽  
Vol 34 (3) ◽  
pp. 434-436 ◽  
Author(s):  
A. Müller ◽  
S. Pohl ◽  
M. Dartmann ◽  
J. P. Cohen ◽  
J. M. Bennett ◽  
...  

Abstract The novel tri-nuclear metal-sulfur cluster [Mo3S(S2)6]2- can be obtained as its ammonium salt by the reaction of a Moiv containing aqueous solutions with polysulfide. Its crystal and molecular structure has been determined by a single crystal X-ray study. The crystals are monoclinic (space group Cm, with a = 11.577(6) Å, b = 16.448(7) Å, c = 5.716(2) Å, β = 117.30(3)°, V = 967.2 Å3 , Z = 2, dexptl. = 2.54(2) g/cm3 , dcal = 2.54 g/cm3). The structure consists of isolated [Mo3S(S2)6]2- units, with three Mo atoms at the vertices of a triangle. There are bridging as well as terminal S22--ligands lying above and below the Mo3-plane (bond distances: Mo-Mo = 2.722 Å, Mo-S(terminal) = 2.435, Mo-S(bridging) = 2.452, Mo3-S = 2.353(4) Å and S-S = 2.04 Å (mean values)).


2002 ◽  
Vol 80 (11) ◽  
pp. 1469-1480 ◽  
Author(s):  
Karena Thieme ◽  
Sara C Bourke ◽  
Juan Zheng ◽  
Mark J MacLachlan ◽  
Fojan Zamanian ◽  
...  

The novel zirconatetraferrocenylcyclotrisiloxane Cp2Zr(OSiFc2)2O (6), dizirconatetraferrocenylcyclotetrasiloxane [Cp2Zr(OSiFc2)O]2 (7), boratetraferrocenylcyclotrisiloxane (C6H5)B(OSiFc2)2O (8), and diboratetraferrocenylcyclotetrasiloxane [(C6H5)B(OSiFc2)O]2 (9) with ferrocenyl (Fc = Fe(η-C5H4)(η-C5H5)) substituents at silicon have been prepared from the reactions of Cp2Zr(NMe2)2 and PhBCl2 with diferrocenylsilanediol Fc2Si(OH)2 (3) and tetraferrocenyldisiloxanediol [Fc2SiOH]2O (5). The compounds were characterized by mass spectrometry, elemental analysis, UV–vis, IR, Raman, and multinuclear NMR spectroscopy, as well as single crystal X-ray diffraction. Thermogravimetric analysis and differential scanning calorimetry investigation of 6–9 showed that the cycles decompose before they can undergo any thermal ring-opening polymerization. In addition, no polymerization was detected in the presence of either KOSiMe3 or HOTf. The bulky ferrocenyl substituents on the Si atoms are likely to be at least partially responsible for the inability of these heterocycles to undergo ring-opening polymerization. Key words: heterocyclosiloxanes, ferrocenyl.


2021 ◽  
Author(s):  
Rizwan Ahmed Khan ◽  
Mobeen Murtaza ◽  
Hafiz Mudaser Ahmad ◽  
Abdulazeez Abdulraheem ◽  
Muhammad Shahzad Kamal ◽  
...  

Abstract In the last decade, hydrophilic Ionic liquids have been emerged as an additive in drilling fluids for clay swelling inhibition. However, the application of hydrophobic Ionic liquids as a clay swelling inhibitor have not been investigated. In this study, the combination of hydrophobic Ionic liquids and Gemini surfactant were studied to evaluate the inhibition performance. The novel combination of hydrophobic ionic liquid (Trihexyltetradecyl phosphonium bis(2,4,4-trimethyl pentyl) phosphinate) and cationic gemini surfactant (GB) was prepared by mixing various concentrations of both chemicals and then preparing water based drilling fluid using other drilling fluid additives such as rheological modifier, filtration control agent, and pH control agent. The wettability of sodium bentonite was determined by contact angle with different concentrations of combined solution. Some other experiments such as linear swelling, capillary suction test (CST) and bentonite swell index were performed to study the inhibition performance of ionic liquid. Different concentrations of novel combined ionic liquid and gemini surfactant were used to prepare the drilling fluids ranging from (0.1 to 0.5 wt.%), and their performances were compared with the base drilling fluid. The wettability results showed that novel drilling fluid having 0.1% Tpb-P - 0.5% GB wt.% concentration has a maximum contact angle indicating the highly hydrophobic surface. The linear swelling was evaluated over the time of 24 hours, and least swelling of bentonite was noticed with 0.1% Tpb-P - 0.5% GB wt.% combined solution compared to linear swelling in deionized water. Furthermore, the results of CST also suggested the improved performance of novel solution at 0.1% Tpb-P - 0.1% GB concentration. The novel combination The novel combination of hydrophobic ionic liquids and gemini surfactant has been used to formulate the drilling fluid for high temperature applications to modify the wettability and hydration properties of clay. The use of novel combined ionic liquid and gemini surfactant improves the borehole stability by adjusting the clay surface and resulted in upgraded wellbore stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Stefania Pragliola ◽  
Antonio Botta ◽  
Rubina Troiano ◽  
Veronica Paradiso ◽  
Fabia Grisi

A new norbornene dicarboximide presenting a pendant carbazole moiety linked by a p-methylene benzyl spacer is synthesized. This carbazole-functionalized monomer is polymerized via ring-opening metathesis polymerization using Grubbs third-generation catalyst. Microstructural analysis of resulting polymers performed by Nuclear Magnetic Resonance (NMR) shows that they are stereoirregular. Wide-angle X-ray diffraction (WAXD) and thermal (DSC) analysis indicate that polymers are also amorphous. With respect to the fluorescence analysis, both solution and film polymer samples exhibit only “normal structured” carbazole fluorescence, while excimer formation by overlap of carbazole groups is not detected.


Soft Matter ◽  
2021 ◽  
Author(s):  
Huijiao Cao ◽  
Wenlin Xu ◽  
Xia Guo

Wormlike micelles (or reverse wormlike micelles) are flexible cylindrical chains that are normally formed in water (or a nonpolar organic solvent) at 25.0 °C or above; the formation of wormlike micelles at lower temperatures is rare.


2019 ◽  
Vol 25 (3) ◽  
pp. 276-280
Author(s):  
Canan URAZ

In this study, electroless nickel (EN) plating on acrylonitrile butadiene styrene (ABS) engineering plastic using room temperature ionic liquids (RTIL) was studied. Electroless plating is a fundamental step in metal plating on plastic. This step makes the plastic conductive and makes it possible to a homogeneous and hard plating without using any hazardous and unfriendly chemical such as palladium, tin, etc. In the industry there are many distinct chemical materials both catalysts and activation solutions for the electroless bath which is one of the most important parts of the process. In this study the effects of the ionic liquid, plating time, and sand paper size were investigated on electroless nickel plating. The etching and the plating processes were performed with environmentally friendly chemicals instead of the chromic and sulphuric acids used in the traditional processes. Experiments were carried out with and without ionic liquid, EMIC, 1-ethyl-3-methyl imidazolium chloride (C6H11N2Cl), and with 400, 500 and 800 grit sandpaper with the application of the sand attrition process and 70, 80, and 90 °C bath temperatures with 30, 60, and 90 minutes of deposition time. The surface morphology and the thickness of deposit analysis were performed using the Fischer scope X-Ray XDL-B System, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Due to the results of the experiments and analysis, the electroless nickel plating on ABS plastic was a success. The best plating was obtained at 5.010 μm as the maximum plating thickness, at 90 min of plating time and 80 °C as the plating bath temperature for electroless nickel plating on ABS plastic whit the surface activated with 800 grit sandpaper using EMIC ionic liquid. DOI: http://dx.doi.org/10.5755/j01.ms.25.3.20116


1995 ◽  
Vol 48 (9) ◽  
pp. 1511 ◽  
Author(s):  
SG Pyne ◽  
J Safaei-G ◽  
BW Skelton ◽  
AH White

The 1,3-dipolar cycloaddition reactions of the chiral oxazolidinone (1) and nitrones are highly regioselective and only 5,5-disubstituted isoxazolidine adducts are formed. These reactions occur under equilibrating conditions to give the more stable adducts that result from addition to the exocyclic methylene of (1) from the sterically more hindered π-face. The endo adducts are generally thermodynamically favoured. In one case the novel azetidine (21) was formed from the treatment of the adduct (4a) with palladium hydroxide on carbon under a hydrogen atmosphere. The major adducts from the reaction of (1) and nitrile oxides (16a,b) had the expected stereochemistry, addition of the 1,3-dipole having occurred from the less hindered π-face of the exocyclic methylene of (1). The stereochemistry of many of these products has been elucidated by single-crystal X-ray structural determinations.


Sign in / Sign up

Export Citation Format

Share Document