scholarly journals p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies

2020 ◽  
Vol 16 ◽  
pp. 337-350
Author(s):  
Panagiotis S Gritzapis ◽  
Panayiotis C Varras ◽  
Nikolaos-Panagiotis Andreou ◽  
Katerina R Katsani ◽  
Konstantinos Dafnopoulos ◽  
...  

A number of p-pyridinyl oxime carbamate derivatives were prepared upon the reaction of the corresponding oximes with isocyanates. These novel compounds reacted photochemically in the presence of supercoiled plasmid DNA. Structure–activity relationship (SAR) studies revealed that the substituent on the imine group was not affecting the extend of the DNA damage, whereas the substituent of the carbamate group was critical, with the halogenated derivatives to be able to cause extensive single and double stranded DNA cleavages, acting as “synthetic nucleases”, independently of oxygen and pH. Calf thymus–DNA affinity studies showed a good-to-excellent affinity of selected both active and non-active derivatives. Preliminary theoretical studies were performed, in an effort to explain the reasons why some derivatives cause photocleavage and some others not, which were experimentally verified using triplet state activators and quenchers. These theoretical studies seem to allow the prediction of the activity of derivatives able to pass intersystem crossing to their triplet energy state and thus create radicals able to damage DNA. With this study, it is shown that oxime carbamate derivatives have the potential to act as novel effective photobase generating DNA-photocleavers, and are proposed as new leads for “on demand” biotechnological applications in drug discovery and medicine.

Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


2020 ◽  
Vol 27 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Bogdan Bumbăcilă ◽  
Mihai V. Putz

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, "three dimensional" variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.


2020 ◽  
Vol 17 (7) ◽  
pp. 840-849
Author(s):  
Mahendra Gowdru Srinivas ◽  
Prabitha Prabhakaran ◽  
Subhankar Probhat Mandal ◽  
Yuvaraj Sivamani ◽  
Pranesh Guddur ◽  
...  

Background: Thiazolidinediones and its bioisostere, namely, rhodanines have become ubiquitous class of heterocyclic compounds in drug design and discovery. In the present study, as part of molecular design, a series of novel glitazones that are feasible to synthesize in our laboratory were subjected to docking studies against PPAR-γ receptor for their selection. Methods and Results: As part of the synthesis of selected twelve glitazones, the core moiety, pyridine incorporated rhodanine was synthesized via dithiocarbamate. Later, a series of glitazones were prepared via Knovenageal condensation. In silico docking studies were performed against PPARγ protein (2PRG). The titled compounds were investigated for their cytotoxic activity against 3T3-L1 cells to identify the cytotoxicity window of the glitazones. Further, within the cytotoxicity window, glitazones were screened for glucose uptake activity against L6 cells to assess their possible antidiabetic activity. Conclusion: Based on the glucose uptake results, structure activity relationships are drawn for the title compounds.


2016 ◽  
Vol 111 ◽  
pp. 138-159 ◽  
Author(s):  
Andrea Nuzzi ◽  
Annalisa Fiasella ◽  
Jose Antonio Ortega ◽  
Chiara Pagliuca ◽  
Stefano Ponzano ◽  
...  

2006 ◽  
Vol 16 (1) ◽  
pp. 142-145 ◽  
Author(s):  
Young-Ger Suh ◽  
Sun Nam Kim ◽  
Dong-Yun Shin ◽  
Soon-Sil Hyun ◽  
Do-Sang Lee ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5847
Author(s):  
Satheesh Gujarathi ◽  
Maroof Khan Zafar ◽  
Xingui Liu ◽  
Robert L. Eoff ◽  
Guangrong Zheng

Garcinoic acid has been identified as an inhibitor of DNA polymerase β (pol β). However, no structure-activity relationship (SAR) studies of garcinoic acid as a pol β inhibitor have been conducted, in part due to the lack of an efficient synthetic method for this natural product and its analogs. We developed an efficient semi-synthetic method for garcinoic acid and its analogs by starting from natural product δ-tocotrienol. Our preliminary SAR studies provided a valuable insight into future discovery of garcinoic acid-based pol β inhibitors.


Sign in / Sign up

Export Citation Format

Share Document