scholarly journals New simple synthesis of ring-fused 4-alkyl-4H-3,1-benzothiazine-2-thiones: Direct formation from carbon disulfide and (E)-3-(2-aminoaryl)acrylates or (E)-3-(2-aminoaryl)acrylonitriles

2013 ◽  
Vol 9 ◽  
pp. 460-466 ◽  
Author(s):  
Qiuping Ding ◽  
Yuqing Lin ◽  
Guangni Ding ◽  
Fumin Liao ◽  
Xiaoyan Sang ◽  
...  

A new simple and efficient method to construct ring-fused 4-alkyl-4H-3,1-benzothiazine-2-thione derivatives has been developed from carbon disulfide and (E)-3-(2-aminoaryl)acrylates or (E)-3-(2-aminoaryl)acrylonitriles under mild conditions, without the need for a metal catalyst. The newly developed method tolerates a wide range of substrates in moderate to excellent yields. Moreover, this method is advantageous over previous ones for the easy synthesis of reactants.

Author(s):  
Birgit Meindl ◽  
Katharina Pfennigbauer ◽  
Berthold Stöger ◽  
Martin Heeney ◽  
Florian Glöcklhofer

Anthracene derivatives have been used for a wide range of applications and many different synthetic methods for their preparation have been developed. However, despite continued synthetic efforts, introducing substituents in some positions has remained difficult. Here we present a method for the synthesis of 2,3,6,7-substituted anthracene derivatives, one of the most challenging anthracene substitution patterns to obtain. The method is exemplified by the preparation of 2,3,6,7-anthracenetetracarbonitrile and employs a newly developed, stable protected 1,2,4,5-benzenetetracarbaldehyde as the precursor. The precursor can be obtained in two scalable synthetic steps from 2,5-dibromoterephthalaldehyde and is converted into the anthracene derivative by a double intermolecular Wittig reaction under very mild conditions followed by a deprotection and intramolecular double ring-closing condensation reaction. Further modification of the precursor is expected to enable the introduction of additional substituents in other positions and may even enable the synthesis of fully substituted anthracene derivatives by the presented approach.<br>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 303
Author(s):  
András Gy. Németh ◽  
Renáta Szabó ◽  
György Orsy ◽  
István M. Mándity ◽  
György M. Keserű ◽  
...  

We have developed the continuous-flow synthesis of thioureas in a multicomponent reaction starting from isocyanides, amidines, or amines and sulfur. The aqueous polysulfide solution enabled the application of sulfur under homogeneous and mild conditions. The crystallized products were isolated by simple filtration after the removal of the co-solvent, and the sulfur retained in the mother liquid. Presenting a wide range of thioureas synthesized by this procedure confirms the utility of the convenient continuous-flow application of sulfur.


2016 ◽  
Vol 52 (29) ◽  
pp. 5128-5131 ◽  
Author(s):  
Zhi-Guang Yuan ◽  
Qiang Wang ◽  
Ang Zheng ◽  
Kai Zhang ◽  
Liang-Qiu Lu ◽  
...  

We have developed an unprecedented route to carbazole by a visible light-photocatalysed formal (4+2) cycloaddition of indole-derived bromides and alkynes. Using this method, a wide range of highly functionalised carbazoles were produced in good yields under mild conditions.


Synthesis ◽  
2021 ◽  
Author(s):  
Wey-Chyng Jeng ◽  
Po-Chung Chien ◽  
Sandip Sambhaji Vagh ◽  
Athukuri Edukondalu ◽  
Wenwei Lin

We report an efficient method for the direct β-acylation of 2-ylideneoxindoles with acyl chlorides in the presence of base-catalyzed by organophosphanes. A variety of functionalized 2-ylideneoxindoles were prepared in moderate to good yields under metal-free and mild conditions via a tandem phospha-Michael/O-acylation/intramolecular cyclization/ rearrangement sequence. The mechanistic investigations revealed that the C-O bond cleavage on possible betaine intermediate is the key step for the installation of keto-functionality at β-position of 2-ylideneoxindoles in a highly stereospecific manner. The synthetic utility of this protocol could also be proven by scale-up reactions and synthetic transformations of the products.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1042
Author(s):  
Xavier H. Guichard ◽  
Francesco Bernasconi ◽  
Alessandro Lauria

Effective charge compensation of europium in hafnium oxide nanoparticles was achieved at low temperature, allowing high doping incorporation (up to 6 at.%) and enhanced luminescence. The efficiency of the incorporation and charge compensation was confirmed by scanning electron microscope energy dispersive X-ray spectroscopy and powder X-ray diffraction measurements. Despite the known polymorphism of hafnium oxide, when doped to a concentration above 3 at.%, only the pure monoclinic phase was observed up to 6 at.% of europium. Furthermore, the low-temperature solvothermal route allowed the direct formation of stable dispersions of the synthesized material over a wide range of concentrations in aqueous media. The dispersions were studied by diffuse light scattering (DLS) to evaluate their quality and by photoluminescence to investigate the incorporation of the dopants into the lattice.


2018 ◽  
Vol 47 (9) ◽  
pp. 2925-2932 ◽  
Author(s):  
J. Brendlé

The sol–gel process involving hydrolysis and condensation reactions is an attractive way to form siloxane based hybrid materials since it is a one-step method performed under mild conditions.


2020 ◽  
Vol 16 ◽  
pp. 611-615 ◽  
Author(s):  
Nuria Vázquez-Galiñanes ◽  
Mariña Andón-Rodríguez ◽  
Patricia Gómez-Roibás ◽  
Martín Fañanás-Mastral

Copper catalysis allows the direct oxygen alkenylation of dialkyl phosphonates with alkenyl(aryl)iodonium salts with selective transfer of the alkenyl group. This novel methodology proceeds with a wide range of phosphonates under mild conditions and gives straightforward access to valuable enol phosphonates in very good yields.


Synthesis ◽  
2019 ◽  
Vol 52 (01) ◽  
pp. 40-50 ◽  
Author(s):  
Nikita M. Chernov ◽  
Roman V. Shutov ◽  
Anastasia E. Potapova ◽  
Igor P. Yakovlev

We report an easy and powerful approach to the synthesis of novel chromeno[4,3-d]pyrimidine-5-acetic acids through ANRORC reaction of electron-deficient 3-vinylchromones and 1,3-N,N-binucleophiles. The reaction proceeds under mild conditions (EtOH, rt) and is applicable to a wide range of substrates. The described compounds show fluorescence in the violet-blue range (390–460 nm) with Stokes shift of 40–80 nm and moderate quantum yield (0.15–0.20). As the electron-withdrawing group is conserved in the form of an acetic acid fragment, these compounds may readily be functionalized or conjugated to a required substrate for (bio)analytical purposes.


Synlett ◽  
2019 ◽  
Vol 30 (20) ◽  
pp. 2273-2278 ◽  
Author(s):  
Piroska Gyárfás ◽  
János Gerencsér ◽  
Warren S. Wade ◽  
László Ürögdi ◽  
Zoltán Novák ◽  
...  

An efficient method for nucleophilic aromatic substitution on 7-azaindoles has been developed. The reaction is facilitated by the unique dual influence of SEM as both protecting and activating group, permitting mild conditions and short reaction times that are compatible with sensitive functional groups. The method is suitable for the synthesis of a broad range of products, most notably ethers.


Sign in / Sign up

Export Citation Format

Share Document