scholarly journals A novel MoS2/ tourmaline /graphene ternary composite with enhanced visible-light photocatalytic property

2021 ◽  
Author(s):  
Mengjia Liu ◽  
Changqiang Yu ◽  
Xiaowen Liu ◽  
Peng Wang ◽  
Yingjie Chen

In this study, MoS2-graphene-tourmaline (MoS2-GR-T) composite photocatalyst was successful synthesized via one-step hydrothermal method. Raman spectra revealed that graphene oxide was reduced to graphene. Scanning electron microscopy images showed that MoS2 was dispersed well on graphene. Transmission electron microscope images showed that MoS2 and tourmaline contacted well with graphene. Analysis of UV-visible diffuse reflectance spectra implied that the bandgap energies of MoS2, MoS2-T and MoS2-GR-T samples were 2.01 eV, 1.91 eV and 1.79 eV, respectively. The photocatalytic performances are evidenced under Xenon lamp irradiation utilizing Rhodamine B dye as the model compound. Compared with MoS2 and MoS2-GR, the MoS2-graphene-tourmaline (MoS2-GR-T) composites exhibited the excellent photocatalytic activity for the degradation about irradiating for 60 min were 93.9% under visible-light. The enhanced photocatalytic activity of MoS2-GR-T composite could be attributed to the exposed adsorption-photocatalytic active sties, the improved light adsorption ability and the promoted charge separation efficiency. The introduction of tourmaline reduced the band gap explored by analysis of UV-visible diffuse reflectance spectra. This work demonstrated that the charge efficiency of photocatalysts could be promoted by coupling both metal-free co-catalyst and polar mineral.

2014 ◽  
Vol 898 ◽  
pp. 23-26
Author(s):  
Jing Li ◽  
Wei Sun ◽  
Wei Min Dai ◽  
Yong Cai Zhang

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.


2012 ◽  
Vol 19 (01) ◽  
pp. 1250005 ◽  
Author(s):  
GUIZHEN WANG ◽  
GENGPING WAN ◽  
SHIWEI LIN

Novel cross Bi2 WO6 microwafers have been fabricated by a facile acetone-assisted solvothermal method in high quantity. The structure characterizations of the microwafers were investigated in detail by means of X-ray powder diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The results indicate that the orthorhombic phase of Bi2 WO6 with high crystallinity can be obtained and each microwafer is polycrystalline in nature and organized by the nanoflake subunits. UV-visible diffuse reflectance spectrum of the prepared Bi2 WO6 microwafers demonstrates that they have absorption in the visible light region. The photocatalytic activity of cross Bi2 WO6 microwafers toward (Rhodamine B) RhB degradation under visible light was investigated, and it was found to be significantly better than that of Bi2 WO6 sample prepared by solid-state reaction (SSR-Bi2 WO6) .


2011 ◽  
Vol 396-398 ◽  
pp. 768-771
Author(s):  
Huan Ying Li ◽  
Shu Li Bai ◽  
Yu Jiang Guan ◽  
Zi Bo Wang

The CdS/CNTs nanocomposites were prepared by a simple heating refluxing method, and the scattering of CdS on CNTs surface was controlled by a dropping way. The samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscope (UV-Vis) .The photocatalytic activity of the samples was tested in the degradation of Methylene blue dye wasterwater under simulated sunlight with 500w short arc xenon lamp. The results showed that the photocatalytic activity of CdS/CNTs composites was enhanced by controlling CdS scatter on CNTs surface, and the forbidden band width was appropriate lowered when CNTs was added, and the scatter of CdS on CNTs surface was uniform and the photocata-lytic activity was the highest when the mass ration of CdS with CNTs was 4:1.The CdS composites have good stability and potential industrial application.


2012 ◽  
Vol 535-537 ◽  
pp. 219-222
Author(s):  
Dan Chen ◽  
Su Juan Hu ◽  
Guo Hua Li

TiO2/FeOOH nanocomposite was fabricated by a hydrolysis-precipitation approach, using TiCl4 as precursor and FeOOH as support. The crystal phase, diameter and morphology of the sample particle were characterized by X-ray diffraction, transmission electron microscope. The results show that the samples are composed of goethite and rutile. The morphology and diameter of rutile particle, the weight percentages of goethite and rutile, and the microstructure of the samples are related to its preparing temperature and molar ratio of Fe/Ti. The photo-absorption properties of the samples and support were measured by an UV-vis spectroscopy. The results show that the absorption ability of the nanocomposite for visible light is well than that of phase pure rutile. The photocatalytic activity of the nanocomposite as prepared was estimated by degradation of methyl orange (MO) under UV or visible light in an aqueous solution at 303 K. The results indicate that the photocatalytic degradation activity of the nanocomposite for MO is higher than that of phase pure rutile, and the photocatalytic property of the sample is related to its molar ratio of Fe/Ti and preparation temperature. This can be attributed to the microstructure of the nanocomposite, which can improve solar utilization and reduce the recombination rate of solar induced electron-hole pair. This implies that a synergistic effect exists between titania and goethite in the nanocomposite.


2016 ◽  
Vol 19 (2) ◽  
pp. 63-67
Author(s):  
Slamet Karim ◽  
Pardoyo Pardoyo ◽  
Agus Subagio

Energi celah pita yang lebar dari semikonduktor TiO2 yang setara dengan cahaya ultraviolet (l<380 nm) membatasi aplikasi fotokatalitik hanya terbatas pada daerah ultraviolet dan tidak pada daerah cahaya tampak (l = 400 nm–700 nm). Pada penelitian ini dilakukan sintesis TiO2 teremban nitrogen yang dipreparasi melalui metode sol-gel. Prekursor TiCl4 digunakan sebagai sumber titanium dioksida dan CO(NH2)2 sebagai sumber nitrogen dan divariasi pada jumlah konsentrasi N dengan variasi 20 g, 30 g, 40 g dan 50 g. Refluks dilakukan pada suhu 100oC selama 7 jam dilanjutkan dengan pengeringan selama 3 jam pada suhu 100oC, dan kalsinasi pada suhu 500oC selama 7 jam . Karakterisasi N-doped TiO2 dilakukan menggunakan X-ray Diffraction (XRD), Fourier Transform–Infra Red spectroscopy (FTIR), dan UV- Visible diffuse reflectance spectra (UV-Vis DRS). Berdasarkan data XRD diketahui bahwa kristal N- doped TiO2 berstruktur anatase dengan indeks Miller 101. Spektra FTIR menunjukkan pergeseran serapan vibrasi O-Ti-O pada bilangan gelombang 400-1050 cm-1, diperkirakan sebagai akibat terbentuknya ikatan N-Ti-O. Spektrum DRS-UV–tampak menunjukkan penurunan energi celah pita dari TiO2 yakni 3,2 eV. Dapat disimpulkan bahwa penambahan konsentrasi nitrogen mengakibatkan penurunan energi celah pita, pada variasi 20g sebesar 3,12 eV, 30 g sebesar 3,09 eV, 40 g sebesar 3,082 eV, dan 50 g sebesar 3,08 eV.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wang Ling-Li ◽  
Ma Wan-Hong ◽  
Wang Shu-Lian ◽  
Zhang Yu ◽  
Jia Man-Ke ◽  
...  

BiOBr nanoplates, marked asα-BiOBr andβ-BiOBr, were synthesized via hydrothermal method using cetylpyridinium bromide (CPB) and NaBr as reactants, respectively. X-Ray Diffraction (XRD), transmission electron microscope (TEM), N2adsorption/desorption, UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and cyclic voltammetry (CV) were employed to characterize the obtained BiOBr. The results showed thatα-BiOBr andβ-BiOBr can absorb visible light and both the band gaps of them were about 2.76 eV. Under visible light irradiation, the photodegradation of organic dye sulforhodamine (SRB) and salicylic acid (SA) usingα-BiOBr andβ-BiOBr as the catalysts was carried out. The reaction kinetic constants of the degradation of SRB byα-BiOBr andβ-BiOBr were 0.00602 min−1and 0.0047 min−1, respectively, which indicated that the photocatalytic activity ofα-BiOBr was higher than that ofβ-BiOBr. The UV-Vis DRS and total organic carbon (TOC) were also monitored, and the TOC removal rate ofα-BiOBr andβ-BiOBr was 86% and 48%, respectively. At the same time, hydrogen peroxide (H2O2) and active radicals were measured and analyzed, which showed that the main active species wasOH∙during the photocatalytic reaction.


2009 ◽  
Vol 79-82 ◽  
pp. 601-604
Author(s):  
Hui Liu ◽  
Li Ang Song ◽  
Wei Liu ◽  
Ge Su ◽  
Li Xin Cao ◽  
...  

Cu2O/TNTs(Titanium-based Nanotubes) composites were prepared by a simple “soak-deoxidize” method by using hydrazine hydrate as the reducing agent. The Cu2O/TNTs composites particles was made by changing pH and the mol ratio of Cu2+:N2H4H2O. The obtained composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-Vis Diffuse reflectance spectra(DRS). The results of UV-Vis diffuse reflectance spectra indicate that the absorption edge of Cu2O/TNTs shows a shift to visible-light region, followed by an obvious absorption peak at 500–700 nm.


2018 ◽  
Vol 77 (5) ◽  
pp. 1441-1448 ◽  
Author(s):  
Yuejin Li ◽  
Xili Shang ◽  
Changhai Li ◽  
Xiaoming Huang ◽  
Jingjing Zheng

Abstract Novel visible-light-induced UiO-66/BiOI photocatalysts with a p–n junction structure have been prepared for the first time through a facile hydrothermal method. The prepared photocatalysts were characterized using the powder X-ray diffraction, high resolution transmission electron microscopy, scanning electron microscopy, UV–visible diffuse reflectance spectra, and N2 adsorption–desorption (Brunauer–Emmett–Teller) techniques respectively. The photodegradation performances of UiO-66/BiOI photocatalysts were evaluated by photodegrading salicylic acid under visible-light irradiation. The UiO-66/BiOI composites displayed much higher photocatalytic efficiencies than pure BiOI under visible light. When the content of UiO-66 was 5.2 wt%, the composite (UiO-66/BiOI-2) has the best photocatalytic activity. Most of the salicylic acid molecules can be degraded in 100 min. The degradation rate of UiO-66/BiOI-2 samples is higher than single BiOI and UiO-66. The enhanced photocatalytic performance of UiO-66/BiOI may be ascribed to the formation of p–n heterojunctions between BiOI and UiO-66, which facilitates the transfer and separation of the photogenerated charge carriers. After recycling of the photocatalyst for five times for the photodegradation of salicylic acid, more than 85% of salicylic acid could still be degraded in the fifth cycle, implying that the as-prepared photocatalysts are highly stable.


2013 ◽  
Vol 668 ◽  
pp. 379-382
Author(s):  
Yan Fen Fang ◽  
Jun Zi Liu ◽  
Shu Lian Wang ◽  
An Ping Deng ◽  
Ying Ping Huang

Ag-TiO2@MnO2 nanoparticles prepared by two-step hydrothermal method were characterized by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), Brunauer-Emmett- Teller (BET) and UV-Visible diffuse reflectance spectra (UV-Vis DRS). The degradation of rhodamine B (RhB) and 2, 4-dichlorophenol (2, 4-DCP) under visible light (λ≥420 nm) were used as probe reactions to investigate the photocatalytic activity of Ag-TiO2@MnO2. The results showed that the basic structure of Ag-TiO2@MnO2 was composed of TiO2 with anatase crystalline structure and α-MnO2 with cubic crysatalline structure. The optimal molar ratio nAg/nMn was 6%. Ag-TiO2@MnO2 had the highest photocatalytic activity in neutral medium because of composing and modifying of Ag. The decolorization rate of RhB reached 100% after 600 min and the mineralization rate of 2, 4-DCP was 47.0% after 30 hr. The oxidation process was dominated by the •OH generated in the system.


Sign in / Sign up

Export Citation Format

Share Document