Weather data for future climate change for South Korean building design: analysis for trends

2010 ◽  
Vol 53 (2) ◽  
pp. 157-171 ◽  
Author(s):  
Kwan-ho Lee ◽  
Geoff J. Levermore
Author(s):  
K. Lin ◽  
W. Zhai ◽  
S. Huang ◽  
Z. Liu

Abstract. The impact of future climate change on the runoff for the Dongjiang River basin, South China, has been investigated with the Soil and Water Assessment Tool (SWAT). First, the SWAT model was applied in the three sub-basins of the Dongjiang River basin, and calibrated for the period of 1970–1975, and validated for the period of 1976–1985. Then the hydrological response under climate change and land use scenario in the next 40 years (2011–2050) was studied. The future weather data was generated by using the weather generators of SWAT, based on the trend of the observed data series (1966–2005). The results showed that under the future climate change and LUCC scenario, the annual runoff of the three sub-basins all decreased. Its impacts on annual runoff were –6.87%, –6.54%, and –18.16% for the Shuntian, Lantang, and Yuecheng sub-basins respectively, compared with the baseline period 1966–2005. The results of this study could be a reference for regional water resources management since Dongjiang River provides crucial water supplies to Guangdong Province and the District of Hong Kong in China.


2013 ◽  
Vol 152 (2) ◽  
pp. 205-216 ◽  
Author(s):  
T. PERSSON ◽  
M. HÖGLIND

SUMMARYPredicted future climate changes in northern Europe include increased air temperature and altered precipitation patterns. There is a lack of knowledge about potential climate change effects on the biomass yield and security of agricultural crops. The present study determined the potential impact of future climate change on the yield and harvest security of timothy (Phleum pratense L.). Harvest security was assessed using data on accumulated precipitation and the length of dry spell period within the 7 days after cutting. Timothy production as a function of weather, soil and management practices was simulated using the LINGRA model for the periods 1961–90, 2046–65 and 2080–99, and the locations Apelsvoll, Ås, Sola, Tromsø and Værnes in Norway and harvest systems with 600 and 800 °C days between cuts. One hundred years of daily weather data were generated with the LARS-WG tool, using future daily weather data sets based on 12 Global Climate Models. Total seasonal biomass yield varied between 690 g dry matter (DM)/m2 for the 800 °C days harvesting regime in the period 1961–90 at Tromsø and 1548 g DM/m2 for the same harvesting regime in the period 2046–65 at Sola. In general, the biomass was higher in the two future periods than in 1961–90 across locations and harvesting regimes, mainly owing to more cuts per season. Accumulated precipitation after cutting varied between 12·2 mm after the first cut for the 600 °C days harvesting regime in the period 1961–90 at Værnes and 42·5 mm after the fourth cut in the 800 °C days harvesting regime in the period 2080–99 at Sola. The longest duration of dry spell 7 days after pre-planned harvest varied between 1·8 days after the fourth cut at Sola in the 600 °C days harvesting regime for the period 2080–99, and 3·9 days after the first cut at Ås in the 800 °C days harvesting regime for the period 2046–65. Potential consequences of these results are discussed.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document