Effects of Hearing Loss on Dual-Task Performance in an Audiovisual Virtual Reality Simulation of Listening While Walking

2016 ◽  
Vol 27 (07) ◽  
pp. 567-587 ◽  
Author(s):  
Sin Tung Lau ◽  
M. Kathleen Pichora-Fuller ◽  
Karen Z. H. Li ◽  
Gurjit Singh ◽  
Jennifer L. Campos

Background: Most activities of daily living require the dynamic integration of sights, sounds, and movements as people navigate complex environments. Nevertheless, little is known about the effects of hearing loss (HL) or hearing aid (HA) use on listening during multitasking challenges. Purpose: The objective of the current study was to investigate the effect of age-related hearing loss (ARHL) on word recognition accuracy in a dual-task experiment. Virtual reality (VR) technologies in a specialized laboratory (Challenging Environment Assessment Laboratory) were used to produce a controlled and safe simulated environment for listening while walking. Research Design: In a simulation of a downtown street intersection, participants completed two single-task conditions, listening-only (standing stationary) and walking-only (walking on a treadmill to cross the simulated intersection with no speech presented), and a dual-task condition (listening while walking). For the listening task, they were required to recognize words spoken by a target talker when there was a competing talker. For some blocks of trials, the target talker was always located at 0° azimuth (100% probability condition); for other blocks, the target talker was more likely (60% of trials) to be located at the center (0° azimuth) and less likely (40% of trials) to be located at the left (270° azimuth). Study Sample: The participants were eight older adults with bilateral HL (mean age = 73.3 yr, standard deviation [SD] = 8.4; three males) who wore their own HAs during testing and eight controls with normal hearing (NH) thresholds (mean age = 69.9 yr, SD = 5.4; two males). No participant had clinically significant visual, cognitive, or mobility impairments. Data Collection and Analysis: Word recognition accuracy and kinematic parameters (head and trunk angles, step width and length, stride time, cadence) were analyzed using mixed factorial analysis of variances with group as a between-subjects factor. Task condition (single versus dual) and probability (100% versus 60%) were within-subject factors. In analyses of the 60% listening condition, spatial expectation (likely versus unlikely) was a within-subject factor. Differences between groups in age and baseline measures of hearing, mobility, and cognition were tested using t tests. Results: The NH group had significantly better word recognition accuracy than the HL group. Both groups performed better when the probability was higher and the target location more likely. For word recognition, dual-task costs for the HL group did not depend on condition, whereas the NH group demonstrated a surprising dual-task benefit in conditions with lower probability or spatial expectation. For the kinematic parameters, both groups demonstrated a more upright and less variable head position and more variable trunk position during dual-task conditions compared to the walking-only condition, suggesting that safe walking was prioritized. The HL group demonstrated more overall stride time variability than the NH group. Conclusions: This study provides new knowledge about the effects of ARHL, HA use, and aging on word recognition when individuals also perform a mobility-related task that is typically experienced in everyday life. This research may help inform the development of more effective function-based approaches to assessment and intervention for people who are hard-of-hearing.

2019 ◽  
Vol 62 (7) ◽  
pp. 2099-2117 ◽  
Author(s):  
Jason A. Whitfield ◽  
Zoe Kriegel ◽  
Adam M. Fullenkamp ◽  
Daryush D. Mehta

Purpose Prior investigations suggest that simultaneous performance of more than 1 motor-oriented task may exacerbate speech motor deficits in individuals with Parkinson disease (PD). The purpose of the current investigation was to examine the extent to which performing a low-demand manual task affected the connected speech in individuals with and without PD. Method Individuals with PD and neurologically healthy controls performed speech tasks (reading and extemporaneous speech tasks) and an oscillatory manual task (a counterclockwise circle-drawing task) in isolation (single-task condition) and concurrently (dual-task condition). Results Relative to speech task performance, no changes in speech acoustics were observed for either group when the low-demand motor task was performed with the concurrent reading tasks. Speakers with PD exhibited a significant decrease in pause duration between the single-task (speech only) and dual-task conditions for the extemporaneous speech task, whereas control participants did not exhibit changes in any speech production variable between the single- and dual-task conditions. Conclusions Overall, there were little to no changes in speech production when a low-demand oscillatory motor task was performed with concurrent reading. For the extemporaneous task, however, individuals with PD exhibited significant changes when the speech and manual tasks were performed concurrently, a pattern that was not observed for control speakers. Supplemental Material https://doi.org/10.23641/asha.8637008


2017 ◽  
Author(s):  
Brad Manor ◽  
Wanting Yu ◽  
Hao Zhu ◽  
Rachel Harrison ◽  
On-Yee Lo ◽  
...  

BACKGROUND Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and “dual-task” walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. OBJECTIVE The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. METHODS We created an iPhone app that used the phone’s motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard–instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times—a clinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. RESULTS Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r2=.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r2=.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). CONCLUSIONS The iPhone app we created enabled valid and reliable assessment of stride timing—with the smartphone in the pocket—during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lasse Embøl ◽  
Carl Hutters ◽  
Andreas Junker ◽  
Daniel Reipur ◽  
Ali Adjorlu ◽  
...  

Cochlear implants (CI) enable hearing in individuals with sensorineural hearing loss, albeit with difficulties in speech perception and sound localization. In noisy environments, these difficulties are disproportionately greater for CI users than for children with no reported hearing loss. Parents of children with CIs are motivated to experience what CIs sound like, but options to do so are limited. This study proposes using virtual reality to simulate having CIs in a school setting with two contrasting settings: a noisy playground and a quiet classroom. To investigate differences between hearing conditions, an evaluation utilized a between-subjects design with 15 parents (10 female, 5 male; age M = 38.5, SD = 6.6) of children with CIs with no reported hearing loss. In the virtual environment, a word recognition and sound localization test using an open-set speech corpus compared differences between simulated unilateral CI, simulated bilateral CI, and normal hearing conditions in both settings. Results of both tests indicate that noise influences word recognition more than it influences sound localization, but ultimately affects both. Furthermore, bilateral CIs are equally to or significantly beneficial over having a simulated unilateral CI in both tests. A follow-up qualitative evaluation showed that the simulation enabled users to achieve a better understanding of what it means to be an hearing impaired child.


2021 ◽  
pp. 154596832110231
Author(s):  
Aditi A. Mullick ◽  
Melanie C. Baniña ◽  
Yosuke Tomita ◽  
Joyce Fung ◽  
Mindy F. Levin

Background. Poststroke individuals use their paretic arms less often than expected in daily life situations, even when motor recovery is scored highly in clinical tests. Real-world environments are often unpredictable and require the ability to multitask and make decisions about rapid and accurate arm movement adjustments. Objective. To identify whether and to what extent cognitive–motor deficits in well-recovered individuals with stroke affect the ability to rapidly adapt reaching movements in changing cognitive and environmental conditions. Methods. Thirteen individuals with mild stroke and 11 healthy controls performed an obstacle avoidance task in a virtual environment while standing. Subjects reached for a virtual juice bottle with their hemiparetic arm as quickly as possible under single- and dual-task conditions. In the single-task condition, a sliding glass door partially obstructed the reaching path of the paretic arm. A successful trial was counted when the subject touched the bottle without the hand colliding with the door. In the dual-task condition, subjects repeated the same task while performing an auditory–verbal working memory task. Results. Individuals with stroke had significantly lower success rates than controls in avoiding the moving door in single-task (stroke: 51.8 ± 21.2%, control: 70.6 ± 12.7%; P = .018) and dual-task conditions (stroke: 40.0 ± 27.6%, control: 65.3 ± 20.0%; P = .015). Endpoint speed was lower in stroke subjects for successful trials in both conditions. Obstacle avoidance deficits were exacerbated by increased cognitive demands in both groups. Individuals reporting greater confidence using their hemiparetic arm had higher success rates. Conclusion. Clinically well-recovered individuals with stroke may have persistent deficits performing a complex reaching task.


2002 ◽  
Vol 14 (8) ◽  
pp. 1184-1199 ◽  
Author(s):  
André J. Szameitat ◽  
Torsten Schubert ◽  
Karsten Müller ◽  
D. Yves von Cramon

We report a study that investigated the neuroanatomical correlates of executive functions in dual-task performance with functional magnetic resonance imaging. Participants performed an auditory and a visual three-choice reaction task either separately as single tasks or concurrently as dual tasks. In the dual-task condition, two stimuli were presented in rapid succession to ensure interference between the component tasks (psychological refractory period). The behavioral data showed considerable performance decrements in the dual-task compared to the single-task condition. Dual-task-related activation was detected with two different neuroimaging methods. First, we determined dual-task-related activation according to the method of cognitive subtraction. For that purpose, activation in the dual-task was compared directly with activation in the single-task conditions. This analysis revealed that cortical areas along the inferior frontal sulcus (IFS), the middle frontal gyrus (MFG), and the intraparietal sulcus (IPS) are involved in dual-task performance. The results of the subtraction method were validated with the method of parametric manipulation. For this purpose, a second dual-task condition was introduced, where the difficulty of the dual-task coordination was increased compared with the first dual-task condition. As expected, behavioral dual-task performance decreased with increased dual-task difficulty. Furthermore, the increased dual-task difficulty led to an increase of activation in those cortical regions that proved to be dual-task related with the subtraction method, that is, the IFS, the MFG, and the IPS. These results support the conclusion that dorsolateral prefrontal and superior parietal cortices are involved in the coordination of concurrent and interfering task processing.


2021 ◽  
Author(s):  
Chang Yoon Baek ◽  
Woo Nam Chang ◽  
Beom Yeol Park ◽  
Kyoung Bo Lee ◽  
Kyoung Yee Kang ◽  
...  

Abstract Objective This study aimed to investigate the effects of dual-task gait training using a treadmill on gait ability, dual-task interference, and fall efficacy in people with stroke. Methods Patients with chronic stroke (N = 34) were recruited and randomly allocated to the experimental or control group. Both groups underwent gait training on a treadmill and a cognitive task. In the experimental group, gait training was conducted in conjunction with the cognitive task, whereas in the control group, the training and the cognitive task were conducted separately. Each intervention was provided for 60 minutes, twice a week, for a period of 6 weeks for both groups. The primary outcomes were as follows: gait parameters (speed, stride, variability, and cadence) under single-task and dual-task conditions, correct response rate (CRR) under single-task and dual-task conditions, and dual-task cost (DTC) in gait parameters and CRR. The secondary outcome was the fall efficacy scale. Results Dual-task gait training using a treadmill improved all gait parameters in the dual-task condition, speed, stride, and variability in the single-task condition, and CRR in both conditions. Difference between the groups was observed in speed, stride, and variability in the dual-task condition. Furthermore, dual-task gait training on a treadmill improved DTC in speed, variability, and cadence along with that in CRR, indicating true improvement of DTC, which led to significant improvement in DTC in speed and variability compared with single-task training. Conclusions Dual-task gait treadmill training was more effective in improving gait ability in dual-task training and DTI than single-task training involving gait and cognitive task separately in people with chronic stroke.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Hannah Bohle ◽  
Jérôme Rimpel ◽  
Gesche Schauenburg ◽  
Arnd Gebel ◽  
Christine Stelzel ◽  
...  

The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Task-dependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity.


2019 ◽  
Author(s):  
Tess C Hawkins ◽  
Rebecca Samuel ◽  
Maria A Fiatarone Singh ◽  
Nicola Gates ◽  
Guy C Wilson ◽  
...  

ABSTRACTBackgroundIndividuals with Mild Cognitive Impairment (MCI) have more gait variability under dual-task conditions than cognitively healthy adults. However, characteristics associated with this susceptibility of gait to dual-task stress are unknown.MethodsTesting was performed at baseline in the Study of Mental And Resistance Training (SMART). Ninety-three adults with MCI (age 70±6.8 years; 66.6% female) performed a single- and dual-task walk (cognitive distractor=letter fluency), in random order. Linear and non-linear gait variability were measured using force-sensitive insoles. Cognitive performance during dual-tasking was assessed by the number of correct words vocalized. Cognitive function, brain Magnetic Resonance Imaging (MRI), muscle strength, aerobic capacity, body composition, physical and psychosocial function were also assessed as potential correlates of gait dynamics.ResultsGait dynamics worsened during dual-tasking, with decrements in both stride time variability (p<0.001) and detrended fluctuation analysis (DFA) (p=0.001). Lower aerobic capacity and thinner posterior cingulate cortex were associated with greater decrements in DFA (p<0.05). Smaller hippocampal volume, worse psychological well-being and poorer static balance were associated with greater decrements in stride time variability (p<0.05). By contrast, cognitive performance did not change under dual-task conditions compared to seated testing (p=0.13).ConclusionsUnder dual-task conditions, participants with MCI preserved their cognitive performance at the expense of gait stability. Decrements in dual-tasking gait were associated with lower aerobic fitness, balance, psychological well-being, and brain volume in cognitively-relevant areas of the posterior cingulate and hippocampus, all potentially modifiable characteristics. Trials of targeted interventions are needed to determine the potential plasticity of gait variability in high-risk cohorts.


10.2196/25451 ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. e25451
Author(s):  
Dongning Su ◽  
Zhu Liu ◽  
Xin Jiang ◽  
Fangzhao Zhang ◽  
Wanting Yu ◽  
...  

Background Parkinson disease (PD) is a common movement disorder. Patients with PD have multiple gait impairments that result in an increased risk of falls and diminished quality of life. Therefore, gait measurement is important for the management of PD. Objective We previously developed a smartphone-based dual-task gait assessment that was validated in healthy adults. The aim of this study was to test the validity of this gait assessment in people with PD, and to examine the association between app-derived gait metrics and the clinical and functional characteristics of PD. Methods Fifty-two participants with clinically diagnosed PD completed assessments of walking, Movement Disorder Society Unified Parkinson Disease Rating Scale III (UPDRS III), Montreal Cognitive Assessment (MoCA), Hamilton Anxiety (HAM-A), and Hamilton Depression (HAM-D) rating scale tests. Participants followed multimedia instructions provided by the app to complete two 20-meter trials each of walking normally (single task) and walking while performing a serial subtraction dual task (dual task). Gait data were simultaneously collected with the app and gold-standard wearable motion sensors. Stride times and stride time variability were derived from the acceleration and angular velocity signal acquired from the internal motion sensor of the phone and from the wearable sensor system. Results High correlations were observed between the stride time and stride time variability derived from the app and from the gold-standard system (r=0.98-0.99, P<.001), revealing excellent validity of the app-based gait assessment in PD. Compared with those from the single-task condition, the stride time (F1,103=14.1, P<.001) and stride time variability (F1,103=6.8, P=.008) in the dual-task condition were significantly greater. Participants who walked with greater stride time variability exhibited a greater UPDRS III total score (single task: β=.39, P<.001; dual task: β=.37, P=.01), HAM-A (single-task: β=.49, P=.007; dual-task: β=.48, P=.009), and HAM-D (single task: β=.44, P=.01; dual task: β=.49, P=.009). Moreover, those with greater dual-task stride time variability (β=.48, P=.001) or dual-task cost of stride time variability (β=.44, P=.004) exhibited lower MoCA scores. Conclusions A smartphone-based gait assessment can be used to provide meaningful metrics of single- and dual-task gait that are associated with disease severity and functional outcomes in individuals with PD.


2020 ◽  
pp. 003151252094508
Author(s):  
Sarah C. Duckworth ◽  
Carrie S. Higginbotham ◽  
Joseph A. Pederson ◽  
Rebecca R. Rogers ◽  
Mallory R. Marshall ◽  
...  

The purpose of this study was to investigate physical and cognitive performance during dual task conditions of upper-extremity (UE) or full-body (FB) rowing exercise. In a crossover counterbalanced design, college-aged male and female participants completed five conditions: (a) Sitting, (b) Single task UE rowing, (c) Single task FB rowing, (d) Dual task UE rowing, and (e) Dual task FB rowing. For single task UE and FB rowing conditions, participants were asked to row as hard as possible. After sitting and dual-task conditions, we administered the Paced Auditory Serial Addition Test (PASAT) and a word-list memory test. We analyzed participants’ absolute differences (single task – dual task) in power output and their cognitive test scores to compare UE and FB rowing. There were no significant absolute differences from sitting to dual task conditions of UE and FB rowing for either PASAT ( p = 0.958) or word list memory ( p = 0.899) cognitive scores. Absolute power output loss from single to dual task conditions was significantly higher in FB versus UE for PASAT ( p = 0.039; d = 0.54) and word list memory ( p = 0.021; d = 0.66) in the dual task condition. These results suggest that, while cognitive performance was preserved regardless of the amount of muscle mass activated during dual task rowing, physical performance suffered more during FB than UE rowing under the dual task condition. These findings have important implications for optimizing cognitive and physical performance in dual task situations.


Sign in / Sign up

Export Citation Format

Share Document