stride time
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 43)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 168-168
Author(s):  
Junhong Zhou ◽  
Gabriele Cattaneo ◽  
Wanting Yu ◽  
Jose Tormos ◽  
Lewis Lipsitz ◽  
...  

Abstract After the age of 65, one’s ability to walk while performing an additional cognitive task (i.e., dual-tasking) is predictive of both future falls and cognitive decline. However, while it is well-known that older adults exhibit diminished dual-task performance, the time course of age-related dual-task decline has not been established. We thus conducted an analysis of data collected within the ongoing Barcelona Brain Health Initiative, a prospective population-based study characterizing the determinants of brain health maintenance in middle-aged adults. Cognitively-unimpaired participants (n=655) aged 40-65 years without neuro-psychiatric disease completed laboratory-based trials of walking normally (single-task) and walking while performing a verbalized serial subtraction task (dual-task). A smartphone-based gait assessment application was used to capture data and derive both the mean stride time (ST) and stride time variability (STV, defined as the coefficient of variation about the mean stride time) of each trial. The dual-task costs (DTC) to each gait metric were obtained by calculating the percent change from single- to dual-task conditions. We categorized participants into five groups according to age (e.g. Group 1: 40-45 years; Group 5: 60-65 years). Age group did not have an effect on single-task gait outcomes (p>0.51). However, the oldest age group, as compared to each of the other groups, exhibited greater DTC to both ST and STV (p<0.03). These results indicate that dual-task walking performance in particular may begin to diminish in late middle age even in the absence of detectable cognitive issues, DTC may offer a sensitive metric to age-related change in cognitive function.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6976
Author(s):  
Dheepak Arumukhom Revi ◽  
Stefano M. M. De Rossi ◽  
Conor J. Walsh ◽  
Louis N. Awad

We present the use of a single inertial measurement unit (IMU) worn on the thigh to produce stride-by-stride estimates of walking speed and its spatiotemporal determinants (i.e., stride time and stride length). Ten healthy and eight post-stroke individuals completed a 6-min walk test with an 18-camera motion capture system used for ground truth measurements. Subject-specific estimation models were trained to estimate walking speed using the polar radius extracted from phase portraits produced from the IMU-measured thigh angular position and velocity. Consecutive flexion peaks in the thigh angular position data were used to define each stride and compute stride times. Stride-by-stride estimates of walking speed and stride time were then used to compute stride length. In both the healthy and post-stroke cohorts, low error and high consistency were observed for the IMU estimates of walking speed (MAE < 0.035 m/s; ICC > 0.98), stride time (MAE < 30 ms; ICC > 0.97), and stride length (MAE < 0.037 m; ICC > 0.96). This study advances the use of a single wearable sensor to accurately estimate walking speed and its spatiotemporal determinants during both healthy and hemiparetic walking.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander Vernon Bates ◽  
Alison H. McGregor ◽  
Caroline M. Alexander

Abstract Background Joint Hypermobility Syndrome (JHS) presents with a range of symptoms including widespread joint hypermobility and chronic arthralgia. The study objective was to investigate whether impairments in JHS are due to hypermobility or another factor of JHS by identifying impairments in gait and stair-climbing tasks; an activity that is demanding and so may better show differences between the cohorts. Methods Sixty-eight adults participated; 23 JHS, 23 Generalised Joint Hypermobility (GJH), and 22 Normal Flexibility (NF). Inclusion criteria for JHS participants were a positive classification using the Brighton Criteria, for GJH a Beighton Score ≥ 4, and for NF a Beighton Score < 4 with no hypermobile knees. Participants were recorded with a 10-camera Vicon system whilst they performed gait and stair-climbing. Temporal-spatial, and sagittal plane kinematic and kinetic outcome measures were calculated and input to statistical analyses by statistical parametric mapping (SPM). Results During the gait activity JHS had significantly greater stride time and significantly lower velocity than NF, and significantly greater stride time, lower velocity, and lower stride length than GJH. SPM analysis showed no significant differences between groups in gait kinematics. There were significant differences between groups for gait moments and powers; people with JHS tended to have lower moments and generate less power at the ankle, and favour power generation at the knee. A similar strategy was present in stair ascent. During stair descent people with JHS showed significantly more hip flexion than people with NF. Conclusions As there was only one significant difference between GJH and NF we conclude that impairments cannot be attributed to hypermobility alone, but rather other factor(s) of JHS. The results show that both gait and stair-climbing is impaired in JHS. Stair-climbing results indicate that JHS are using a knee-strategy and avoiding use of the ankle, which may be a factor for clinicians to consider during treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoo Jin Choo ◽  
Min Cheol Chang

AbstractWe conducted a meta-analysis to investigate the effectiveness of ankle–foot orthosis (AFO) use in improving gait biomechanical parameters such as walking speed, mobility, and kinematics in patients with stroke with gait disturbance. We searched the MEDLINE (Medical Literature Analysis and Retrieval System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, Embase, and Scopus databases and retrieved studies published until June 2021. Experimental and prospective studies were included that evaluated biomechanics or kinematic parameters with or without AFO in patients with stroke. We analyzed gait biomechanical parameters, including walking speed, mobility, balance, and kinematic variables, in studies involving patients with and without AFO use. The criteria of the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the methodological quality of the studies, and the level of evidence was evaluated using the Research Pyramid model. Funnel plot analysis and Egger’s test were performed to confirm publication bias. A total of 19 studies including 434 participants that reported on the immediate or short-term effectiveness of AFO use were included in the analysis. Significant improvements in walking speed (standardized mean difference [SMD], 0.50; 95% CI 0.34–0.66; P < 0.00001; I2, 0%), cadence (SMD, 0.42; 95% CI 0.22–0.62; P < 0.0001; I2, 0%), step length (SMD, 0.41; 95% CI 0.18–0.63; P = 0.0003; I2, 2%), stride length (SMD, 0.43; 95% CI 0.15–0.71; P = 0.003; I2, 7%), Timed up-and-go test (SMD, − 0.30; 95% CI − 0.54 to − 0.07; P = 0.01; I2, 0%), functional ambulation category (FAC) score (SMD, 1.61; 95% CI 1.19–2.02; P < 0.00001; I2, 0%), ankle sagittal plane angle at initial contact (SMD, 0.66; 95% CI 0.34–0.98; P < 0.0001; I2, 0%), and knee sagittal plane angle at toe-off (SMD, 0.39; 95% CI 0.04–0.73; P = 0.03; I2, 46%) were observed when the patients wore AFOs. Stride time, body sway, and hip sagittal plane angle at toe-off were not significantly improved (p = 0.74, p = 0.07, p = 0.07, respectively). Among these results, the FAC score showed the most significant improvement, and stride time showed the lowest improvement. AFO improves walking speed, cadence, step length, and stride length, particularly in patients with stroke. AFO is considered beneficial in enhancing gait stability and ambulatory ability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Prakruti Patel ◽  
Agostina Casamento-Moran ◽  
Evangelos A. Christou ◽  
Neha Lodha

Purpose: Increased gait variability in stroke survivors indicates poor dynamic balance and poses a heightened risk of falling. Two primary motor impairments linked with impaired gait are declines in movement precision and strength. The purpose of the study is to determine whether force-control training or strength training is more effective in reducing gait variability in chronic stroke survivors.Methods: Twenty-two chronic stroke survivors were randomized to force-control training or strength training. Participants completed four training sessions over 2 weeks with increasing intensity. The force-control group practiced increasing and decreasing ankle forces while tracking a sinusoid. The strength group practiced fast ankle motor contractions at a percentage of their maximal force. Both forms of training involved unilateral, isometric contraction of the paretic, and non-paretic ankles in plantarflexion and dorsiflexion. Before and after the training, we assessed gait variability as stride length and stride time variability, and gait speed. To determine the task-specific effects of training, we measured strength, accuracy, and steadiness of ankle movements.Results: Stride length variability and stride time variability reduced significantly after force-control training, but not after strength training. Both groups showed modest improvements in gait speed. We found task-specific effects with strength training improving plantarflexion and dorsiflexion strength and force control training improving motor accuracy and steadiness.Conclusion: Force-control training is superior to strength training in reducing gait variability in chronic stroke survivors. Improving ankle force control may be a promising approach to rehabilitate gait variability and improve safe mobility post-stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sungmoon Jeong ◽  
Hosang Yu ◽  
Jaechan Park ◽  
Kyunghun Kang

AbstractA vision-based gait analysis method using monocular videos was proposed to estimate temporo-spatial gait parameters by leveraging deep learning algorithms. This study aimed to validate vision-based gait analysis using GAITRite as the reference system and analyze relationships between Frontal Assessment Battery (FAB) scores and gait variability measured by vision-based gait analysis in idiopathic normal pressure hydrocephalus (INPH) patients. Gait data from 46 patients were simultaneously collected from the vision-based system utilizing deep learning algorithms and the GAITRite system. There was a strong correlation in 11 gait parameters between our vision-based gait analysis method and the GAITRite gait analysis system. Our results also demonstrated excellent agreement between the two measurement systems for all parameters except stride time variability after the cerebrospinal fluid tap test. Our data showed that stride time and stride length variability measured by the vision-based gait analysis system were correlated with FAB scores. Vision-based gait analysis utilizing deep learning algorithms can provide comparable data to GAITRite when assessing gait dysfunction in INPH. Frontal lobe functions may be associated with gait variability measurements using vision-based gait analysis for INPH patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sébastien Baillieul ◽  
Bernard Wuyam ◽  
Dominic Pérennou ◽  
Renaud Tamisier ◽  
Sébastien Bailly ◽  
...  

AbstractTo determine the effect of continuous positive airway pressure (CPAP), the gold standard treatment for obstructive sleep apnea syndrome (OSAS), on gait control in severe OSAS patients. We conducted a randomized, double-blind, parallel-group, sham-controlled monocentric study in Grenoble Alpes University Hospital, France. Gait parameters were recorded under single and dual-task conditions using a visuo-verbal cognitive task (Stroop test), before and after the 8-week intervention period. Stride-time variability, a marker of gait control, was the primary study endpoint. Changes in the determinants of gait control were the main secondary outcomes. ClinicalTrials.gov Identifier: (NCT02345694). 24 patients [median (Q1; Q3)]: age: 59.5 (46.3; 66.8) years, 87.5% male, body mass index: 28.2 (24.7; 29.8) kg. m−2, apnea–hypopnea index: 51.6 (35.0; 61.4) events/h were randomized to be treated by effective CPAP (n = 12) or by sham-CPAP (n = 12). A complete case analysis was performed, using a mixed linear regression model. CPAP elicited no significant improvement in stride-time variability compared to sham-CPAP. No difference was found regarding the determinants of gait control. This study is the first RCT to investigate the effects of CPAP on gait control. Eight weeks of CPAP treatment did not improve gait control in severe non-obese OSAS patients. These results substantiate the complex OSAS-neurocognitive function relationship.


2021 ◽  
Vol 11 (6) ◽  
pp. 2840
Author(s):  
Hassan Sadeghi ◽  
Seyed Sadredin Shojaedin ◽  
Ali Abbasi ◽  
Elham Alijanpour ◽  
Marcus Fraga Vieira ◽  
...  

Falling is one of the most common causes of hip fracture and death in older adults. A comparison of the biomechanics of the gait in fallers and non-fallers older adults, especially joint coordination and coordination variability, enables the understanding of mechanisms that underpin falling. Therefore, we compared lower-extremity intra-joint coordination and its variability between fallers and non-fallers older adults during gait. A total of 26 older adults, comprising 13 fallers, took part in this study. The participants walked barefoot at a self-selected speed on a 10-m walkway. Gait kinematics in the dominant leg during 10 cycles were captured with 10 motion tracking cameras at a sampling rate of 100 Hz. Spatiotemporal gait parameters, namely, cadence, walking speed, double support time, stride time, width, and length, as well as intra-joint coordination and coordination variability in the sagittal plane were compared between the two groups. Results showed that fallers walked with significant lower cadence, walking speed, and stride length but greater double support and stride time than non-fallers. Significant differences in the ankle-to-knee, knee-to-hip, and ankle-to-hip coordination patterns between fallers and non-fallers and less coordination variability in fallers compared to non-fallers in some instants of the gait cycles were observed. The differences in spatiotemporal gait parameters in fallers compared to non-fallers may indicate an adaptation resulting from decreased efficiency to decrease the risk of falling. Moreover, the differences in segment coordination and its variability may indicate an inconsistency in neuromuscular control. It may also indicate reduced ability to control the motion of the leg in preparation for foot contact with the ground and the knee and ankle motions during loading response. Finally, such differences may show less control in generating power during the push-off phase in fallers.


2021 ◽  
Vol 11 (3) ◽  
pp. 321
Author(s):  
Florian Brugger ◽  
Regina Wegener ◽  
Florent Baty ◽  
Julia Walch ◽  
Marie T. Krüger ◽  
...  

Freezing of gait (FOG) in Parkinson’s disease (PD) occurs frequently in situations with high environmental complexity. The supplementary motor cortex (SMC) is regarded as a major network node that exerts cortical input for motor control in these situations. We aimed at assessing the impact of single-session (excitatory) intermittent theta burst stimulation (iTBS) of the SMC on established walking during FOG provoking situations such as passing through narrow spaces and turning for directional changes. Twelve PD patients with FOG underwent two visits in the off-medication state with either iTBS or sham stimulation. At each visit, spatiotemporal gait parameters were measured during walking without obstacles and in FOG-provoking situations before and after stimulation. When patients passed through narrow spaces, decreased stride time along with increased stride length and walking speed (i.e., improved gait) was observed after both sham stimulation and iTBS. These effects, particularly on stride time, were attenuated by real iTBS. During turning, iTBS resulted in decreased stride time along with unchanged stride length, a constellation compatible with increased stepping frequency. The observed iTBS effects are regarded as relative gait deterioration. We conclude that iTBS over the SMC increases stepping frequency in PD patients with FOG, particularly in FOG provoking situations.


Sign in / Sign up

Export Citation Format

Share Document