Calculation of brake-force distribution on three-axle agricultural trailers using simulation methods

2021 ◽  
Vol 2021 (1) ◽  
pp. 1-18
Author(s):  
Paweł Radzajewski ◽  

The paper presents a new methodology for calculating the optimal linear distribution of braking forces for a three-axle trailer with "walking beam" and "bogie" suspension of the rear axle assembly that will meet the requirements of the new European legislation, EU Directive 2015/68. On this basis, a computer program for selecting the linear distribution of braking forces between axles has been developed. The presented calculations and simulation results of the braking process can be used in the design process to select the parameters of the wheel braking mechanisms and then the characteristics of the pneumatic valves of the braking system. The adaptation of the braking system of agriculture trailers is a very important factor for improving the safety of the transportation systems.

2014 ◽  
Vol 680 ◽  
pp. 347-353
Author(s):  
Meng Ling Wu ◽  
Lei Zhi Wu ◽  
Yun Feng Li ◽  
Chun Tian

Through the investigation of some problems of subway, that is, abnormal wheel tread wear and excessive brake shoe abrasion, caused by applying irrational electro-pneumatic brake force distribution strategies in the quotidian operation subway lines, a braking system simulation platform based on AMESim is established in order to point out the pros and cons of various distribution strategies, such as diverse converting points of electric and pneumatic braking, assorted pneumatic brake force distribution methods; the indexes include brake shoe pressure and imposed time of pneumatic braking; service brake and emergency brake are regarded.


2014 ◽  
Vol 543-547 ◽  
pp. 1405-1408 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Li Peng Ren

A design of regenerative braking system (RBS) for a pure electric bus was presented in this paper. A design of regenerative braking system for a pure electric bus was presented in this paper The control of regenerative braking was achieved by Pneumatic ABS and improve braking energy recovery under the premise of ensure braking performance. Regenerative braking control algorithm was mainly composed of two parts for the identification of the drivers intention and the brake force distribution. The regenerative brake control model was built in the matlab/simulink environment, rapid prototyping control was achieved by Autobox and vehicle test was carried on. Result shows that the control strategies can effectively make the pneumatic brake system and motor brake system work harmoniously.


2010 ◽  
Vol 29-32 ◽  
pp. 1985-1990 ◽  
Author(s):  
Ju Wei Li ◽  
Jian Wang

Antilock braking system (ABS) is a standard equipment for passenger car, it can prevent automobile wheels from locking-up and improve braking performance. Electronic brake force distribution (EBD) can prevent the rear wheels from locking prior to the front wheels, it can automatically adjust the braking force distribution scale among the wheels. In this paper, a vehicle model and tire model are developed, a sliding mode controller is designed for ABS system and a fuzzy controller is designed for EBD system. Dry asphalt road and wet asphalt road are used to simulate the performance of ABS/EBD system. The simulation results show that the control method can make full use of the respective advantages of ABS and EBD systems.


2021 ◽  
Vol 12 (2) ◽  
pp. 76-84
Author(s):  
Alexander Nazarov ◽  
◽  
Ivan Nazarov ◽  
Yevhen Shpinda ◽  
Sergiy Shablenko ◽  
...  

The article proposes a method for assessing the change in the braking properties of passenger cars during operation following a change in the main characteristic of the brake system - the coefficient of distribution of braking forces between the axles of vehicles, both equipped and not equipped with tracking systems for the braking process by installing brake force regulators in the brake circuits, working according to different laws of changing the drive pressure. The aim of the work is a comparative assessment of the braking efficiency of passenger cars using the example of Lanos cars, the braking systems of which are equipped with various devices for changing the coefficient of distribution of braking forces between the axles, under changing operating conditions. It is known that braking efficiency is an indicator characterizing the braking properties and the ability of a car to maintain a given law of motion during braking, which is determined both by the nature of the adhesion properties of the wheels to the road and the capabilities of the braking system itself to implement these properties. Since the operating conditions of passenger cars significantly affect the braking properties, in order to ensure the required braking efficiency, it is necessary to take into account the change in the primary distribution coefficient of the braking forces generated by the braking mechanisms and the change in their implementation during the operation period. In order to assess the change in the braking properties in the general case of the operation of a passenger car, the dependence of the actual coefficient of distribution of braking forces between the axles on the braking coefficient was proposed. Moreover, the value of the coefficient of distribution of braking forces between the axles depends both on the type of laws of regulation of braking forces and on the residual values of the parameters of braking systems that determine these laws. These dependences on the parameters of the braking systems and the parameters of the passenger car in operation are a function of the goal for determining the residual output characteristics of its braking system.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 938
Author(s):  
Hanwei Bao ◽  
Zaiyu Wang ◽  
Zihao Liu ◽  
Gangyan Li

In contrast to the traditional pneumatic braking system, the electronic-controlled pneumatic braking system of commercial vehicles is a new system and can remedy the defects of the conventional braking system, such as long response time and low control accuracy. Additionally, it can adapt to the needs and development of autonomous driving. As the key pressure regulating component in electronic-controlled pneumatic braking system of commercial vehicles, automatic pressure regulating valves can quickly and accurately control the braking pressure in real time through an electronic control method. By aiming at improving driving comfort on the premise of ensuring braking security, this paper took the automatic pressure regulating valve as the research object and studied the pressure change rate during the braking process. First, the characteristics of the automatic pressure regulating valve and the concept of the pressure change rate were elaborated. Then, with the volume change of automatic pressure regulating valve in consideration, the mathematical model based on gas dynamics and the association model between pressure change rate and vehicle dynamic model was established in MATLAB/Simulink and analyzed. Next, through the experimental test of a sample product, the mathematical models have been verified. Finally, the key structure parameters affecting the pressure change rate of the automatic pressure regulating valve and the influence law have been identified; therefore, appropriate design advice and theoretical support have been provided to improve driving comfort.


2014 ◽  
Vol 989-994 ◽  
pp. 3335-3339
Author(s):  
Zhao Xu Yu ◽  
Hong Bin Yu

This paper analyzes the electric inertia simulation method deeply. By analyzing the brake torgue in the braking process, this paper makes a conclusion about the relationship between the moter’s torgue in the braking process and the simulation of inertia. The test uses the method of combining the mechanical simulation and electrical simulation. In this method, it invites the test platform of electric bicycle brake force, and realizes the inertia simulation. On the test platform, the results showed: by using the electric inertia simulation, the performance of the system is obviously better than the one on the test platform which using flywheel groups. This method improves the degree of automation on the test platform.


Author(s):  
Jonathan Nadeau ◽  
Philippe Micheau ◽  
Maxime Boisvert

Within the field of electric vehicles, the cooperative control of a dual electro-hydraulic regenerative brake system using the foot brake pedal as the sole input of driver brake requests is a challenging control problem, especially when the electro-hydraulic brake system features on/off solenoid valves which are widely used in the automotive industry. This type of hydraulic actuator is hard to use to perform a fine brake pressure regulation. Thus, this paper focuses on the implementation of a novel controller design for a dual electro-hydraulic regenerative brake system featuring on/off solenoid valves which track an “ideal” brake force distribution. As an improvement to a standard brake force distribution, it can provide the reach of the maximum braking adherence and can improve the energy recovery of a rear-wheel-drive electric vehicle. This improvement in energy recovery is possible with the complete substitution of the rear hydraulic brake force with a regenerative brake force until the reach of the electric powertrain constraints. It is done by performing a proper brake pressure fine regulation through the proposed variable structure control of the on/off solenoid valves provided by the hydraulic platform of the vehicle stability system. Through road tests, the tracking feasibility of the proposed brake force distribution with the mechatronic system developed is validated.


Sign in / Sign up

Export Citation Format

Share Document