scholarly journals Biology and Mass Rearing Studies of Eucanthecona furcellata Wolf. (HEMIPTERA: PENTATOMIDAE) a Potential Polyphagous Predator and its Effect on Field Population of White Slug Caterpillar, Parasa philepida in Cabadbaran, Agusan del Norte, Philippines

CORD ◽  
1993 ◽  
Vol 9 (01) ◽  
pp. 34
Author(s):  
Vivencio C. Gallego ◽  
Ruby T. Escalona ◽  
Joana M.S. Ferreira

The biology and mass rearing of Eucanthecona furcellata Wolf, a polyphagous predator, was studied under laboratory conditions.   The predator has a total life cycle (egg to adult) of 46.25 days. The egg hatched 6 days after laying. The nymphs undergo seven instars with each stage ranging from 2.0 ‑ 2.35 days.   Mass‑rearing techniques, effect of field releases and other ecological factors on pest population as well as other biological informations are also described.

2016 ◽  
Vol 69 (1) ◽  
pp. 7763-7771 ◽  
Author(s):  
Ana Milena Castro Marquez ◽  
Daniel Rodriguez Caicedo

This study describes the life cycle of Copitarsia uncilata Burgos & Leiva (Lepidoptera: Noctuidae) under laboratory conditions without photophase and a second experiment with photophase of 12 hours on three natural diets. The life cycle of C. uncilata was significantly shorter for females (76.46 ± 1.01 days, p=0.033) reared on alstroemeria (Alstroemeria sp.) diet without photophase, and for males (79.78 ± 0.36 days, p=0.046) reared on broccoli (Brassica oleracea italica), with photophase. The emergence of the adults was 100% and 73.33% from larvae fed on alstroemeria, 90.9% and 88.88% for individuals fed on broccoli, 86.2% and 50% for those fed on cauliflower (Brassica oleracea var. botrytis), without and with photophase respectively. The sex ratio (male:female) of individuals reared without photophase, evidenced a higher rate of females on alstroemeria (1:1.3), followed by cauliflower (1:0.6) and broccoli (1:0.5). In the experiment with photophase, the sex ratio was higher on alstroemeria (1:1.5), followed by cauliflower (1:0.9) and broccoli (1:0.6). As a conclusion, the most suitable diet for laboratory mass rearing in terms of life cycle parameters of C. uncilata is broccoli followed by alstroemeria and cauliflower.


2013 ◽  
Vol 45 (1) ◽  
pp. 7
Author(s):  
L.C. Martínez ◽  
A. Plata-Rueda

The scarabaeid <em>Leucothyreus femoratus</em> (Burmeister) is described as causing damage to oil palm leaves, marking its first report as a pest in Colombia. The presence of this insect has necessitated determination of its life cycle, biometrics and food consumption as important aspects of its biology. Experiments were conducted under laboratory conditions in the municipality of San Vicente, Santander, Colombia. Mass rearing of <em>L. femoratus</em> was conducted, simulating field conditions and eating habits under laboratory conditions. Its life cycle and description of its developmental stages were determined, taking into account stage-specific survival. The duration of the life cycle of <em>L. femoratus</em> was determined to be 170.4&plusmn;6.53, with an overall survival rate of 96.7%. Biometrical measurements were taken of the insect&rsquo;s width, length and weight. Adults are black, and males and females are differentiated by size and by colour of their legs. The width, length and weight of the insect are proportional to the growth stage. Daily food consumption rate was evaluated in adult <em>L. femoratus</em>, and damage to leaves of <em>Elaeis guineensis</em> is described. Adult <em>L. femoratus</em> consumed 13 mm<sup>2</sup> of foliage per day, and injury to leaves of <em>E. guineensis</em> was square or rectangular in shape. This insect&rsquo;s life cycle duration and size are factors that could be considered in determining its feeding habits and pest status. Details of the life cycle, physical description and consumption rate of <em>L. femoratus</em> can help in the development of strategies to manage its populations in oil palm plantations.


Author(s):  
Raluca STAN ◽  
Ion MITREA

Buxus sempervirens Linné is one of the most cultivated ornamental species, but in recent years it has faced a dangerous pest, Cydalima perspectalis (Walker) (Lepidoptera: Crambidae) native to the Asian Continent (China, Japan, Korea). In 2019 we conducted some investigations on the life cycle of this pest. The research was carried out both in the laboratory and in the field, in the ‘Al. Buia’ Botanical Garden from Craiova. Under laboratory conditions, this species has developed four complete generations, and the fifth generation, partial. The temperature in the laboratory was between 23.5°C-26°C, and the photoperiod during the study was between 12-15 hours of light and 12-9 hours of darkness. In the field this pest has developed three complete generations and the fourth was partial. The number of days for the generations developed in the laboratory is 272 days, and for the field population 286 days.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Naglaa F. Abdel-Hameid ◽  
I. R. M. Elzoghby ◽  
A. L. Mehany ◽  
W. A. A. Sayed

AbstractThe performance of parasitism by the egg parasitoid, Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) on eggs of Angoumois grain moth, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae) was investigated under cold storage and gamma irradiation treatments of the host eggs. Cold storage treatment could improve the parasitoid mass rearing techniques and reduced the costs of biological control programs, while gamma irradiation might be used as a supplementary support at the times of high demand. The suitability of the S. cerealella eggs, stored at – 20 °C for 0.5, 1, or 2 h. as a host for T. evanescens was evaluated. The sensitivity of S. cerealella eggs to gamma irradiation treatments and the acceptability of irradiated eggs for parasitism by T. evanescens females for the parental P and F1 generations were examined. The results revealed that parasitism was drastically reduced more than adult’s emergence and sex-ratio (% of females) after cold storage periods of S. cerealella eggs. Moreover, the parasitism percentages were relatively reduced to (97.1, 96.1, 93.03, and 92.7 %) after irradiating the S. cerealella eggs at 40, 60, 80, and 100 Gy, respectively than the control (97.3% emergence). The percentages of emergence and females’ percent were slightly decreased by gamma irradiation doses, while, equal preferred by the F1 generation of parasitoid that produced from irradiated S. cerealella eggs.


2009 ◽  
Vol 160 (1-2) ◽  
pp. 134-137 ◽  
Author(s):  
Ze Chen ◽  
Zhijun Yu ◽  
Xiaojun Yang ◽  
Hongyuan Zheng ◽  
Jingze Liu

2012 ◽  
Vol 59 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Miling Ma ◽  
Guiquan Guan ◽  
Ze Chen ◽  
Zhijie Liu ◽  
Aihong Liu ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1017
Author(s):  
Sarayut Pittarate ◽  
Julius Rajula ◽  
Afroja Rahman ◽  
Perumal Vivekanandhan ◽  
Malee Thungrabeab ◽  
...  

Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.


2020 ◽  
Vol 49 (6) ◽  
pp. 71-78
Author(s):  
О. M. Bonina ◽  
Е. А. Serbina

The results of studying the body structure of trematode cercariae of the families Opisthorchiidae and Notocotylidae and the features of their development in Western Siberia are presented. The data of long-term (1994–2019) studies on the spread of these pathogens of dangerous parasitic diseases in humans and animals are analyzed and summarized. The studies were conducted according to generally accepted methods in parasitology and hydrobiology. The species affi  liation of trematodes was determined in laboratory conditions on mature cercariae that independently left the shells of the host mollusks Bithynia tentaculata and B. troscheli. It was noted that the trematodes of the Opisthorchiidae and Notocotylidae families at the cercaria stage have the following similar features: a simple tail, pigmented eyes, and one oral sucking cup. Diagnosis of trematode cercariae of Opisthorchiidae and Notocotylidae families is possible by the following signs: the tail of the opisthorchis cercaria has a swimming membrane and is 2 times longer than the body, the tail of the notocotylid has no swimming membrane and is approximately equal in length to the body. Opisthor-chis cercariae have two pigment eyes, notocotilids – three. In the life cycle of opisthorchis, there are two intermediate hosts (bitinia and fi  sh), in the notocotylid cycle, one (bitinia). Opisthorchis cercariae have penetration glands, but notocotylids do not; the maximum daily emission of opisthorchis cercariae is ten times higher than that of notocotylids (6672 and 422 cercariae, respectively). The ability to diagnose opisthorchis and notocotilid at the cercaria stage allows the identifi cation of local foci of epidemiologically and epizootically dangerous diseases.


Sign in / Sign up

Export Citation Format

Share Document