scholarly journals Differential and integral equations for Legendre-Laguerre based hybrid polynomials

2021 ◽  
Vol 73 (3) ◽  
pp. 408-421
Author(s):  
S. Khan ◽  
M. Riyasat ◽  
Sh. A. Wani

UDC 517.9 In this article, a hybrid family of three-variable Legendre – Laguerre – Appell polynomials is explored and their properties including the series expansions, determinant forms, recurrence relations, shift operators, followed by differential, integro-differential and partial differential equations are established. The analogous results for the three-variable Hermite – Laguerre – Appell polynomials are deduced. Certain examples in terms of Legendre – Laguerre – Bernoulli, –E uler and – Genocchi polynomials are constructed to show the applications of main results. A further investigation is performed by deriving homogeneous Volterra integral equations for these polynomials and for their relatives.

2018 ◽  
Vol 9 (3) ◽  
pp. 185-194 ◽  
Author(s):  
Subuhi Khan ◽  
Mumtaz Riyasat ◽  
Shahid Ahmad Wani

Abstract The article aims to explore some new classes of differential equations and associated integral equations for some hybrid families of Laguerre polynomials. The recurrence relations and differential, integro-differential and partial differential equations for the hybrid Laguerre–Appell polynomials are derived via the factorization method. An analogous study of these results for the hybrid Laguerre–Bernoulli, Euler and Genocchi polynomials is presented. Further, the Volterra integral equations for the hybrid Laguerre–Appell polynomials and for their corresponding members are also explored.


Filomat ◽  
2014 ◽  
Vol 28 (4) ◽  
pp. 695-708 ◽  
Author(s):  
H.M. Srivastava ◽  
M.A. Özarslan ◽  
Banu Yılmaz

Recently, Khan et al. [S. Khan, G. Yasmin, R. Khan and N. A. M. Hassan, Hermite-based Appell polynomials: Properties and Applications, J. Math. Anal. Appl. 351 (2009), 756-764] defined the Hermite-based Appell polynomials by G(x, y, z, t) := A(t)?exp(xt + yt2 + zt3) = ??,n=0 HAn(x, y, z) tn/n! and investigated their many interesting properties and characteristics by using operational techniques combined with the principle of monomiality. Here, in this paper, we find the differential, integro-differential and partial differential equations for the Hermite-based Appell polynomials via the factorization method. Furthermore, we derive the corresponding equations for the Hermite-based Bernoulli polynomials and the Hermite-based Euler polynomials. We also indicate how to deduce the corresponding results for the Hermite-based Genocchi polynomials from those involving the Hermite-based Euler polynomials.


2021 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Naeem Ahmad ◽  
Raziya Sabri ◽  
Mohammad Faisal Khan ◽  
Mohammad Shadab ◽  
Anju Gupta

This article has a motive to derive a new class of differential equations and associated integral equations for some hybrid families of Laguerre–Gould–Hopper-based Sheffer polynomials. We derive recurrence relations, differential equation, integro-differential equation, and integral equation for the Laguerre–Gould–Hopper-based Sheffer polynomials by using the factorization method.


2020 ◽  
Vol 21 (01) ◽  
pp. 2150004
Author(s):  
Hanxiao Wang

This paper is concerned with the relationship between backward stochastic Volterra integral equations (BSVIEs, for short) and a kind of non-local quasilinear (and possibly degenerate) parabolic equations. As a natural extension of BSVIEs, the extended BSVIEs (EBSVIEs, for short) are introduced and investigated. Under some mild conditions, the well-posedness of EBSVIEs is established and some regularity results of the adapted solution to EBSVIEs are obtained via Malliavin calculus. Then it is shown that a given function expressed in terms of the adapted solution to EBSVIEs uniquely solves a certain system of non-local parabolic equations, which generalizes the famous nonlinear Feynman–Kac formula in Pardoux–Peng [Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, 1992), pp. 200–217].


2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


2021 ◽  
Vol 5 (1) ◽  
pp. 51-63
Author(s):  
Mawia Osman ◽  
◽  
Zengtai Gong ◽  
Altyeb Mohammed Mustafa ◽  
◽  
...  

In this paper, the reduced differential transform method (RDTM) is applied to solve fuzzy nonlinear partial differential equations (PDEs). The solutions are considered as infinite series expansions which converge rapidly to the solutions. Some examples are solved to illustrate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document