scholarly journals Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco

Author(s):  
Bambang Darmono ◽  
Hadi Pranoto ◽  
Zainal Arifin

The motor releases torque and power to drive an electric car by carrying the load from a start position until it travels at the desired speed. The KMLI E-Falco electric car uses a BLDC type electric motor with a power capacity of 2 kW. To find out the amount of torque of a 2 kW BLDC motor when driving with variations in speed, it can be done by manual calculations using the torque equation and doing a dynotest test. The dynotest results show that the motor torque at the speed: 1 km/h is 1 Nm, 10 km/h is 131 Nm, 13 km/h is 228 Nm, 20 km/h is 225 Nm, 30 km/h is 219 Nm, 40 km / h is 188 Nm, 50 km / hour is 145 Nm, 60 km / h is 113 Nm, and 70 km / h is 85 Nm. From the results of the dynotest, it shows that the peak torque occurs at a speed of 13 km / h at 228 Nm. Racing software installed in the controller can increase the motor torque by four times at a speed variation of 13-70 km/h based on the results of the dynotest above. Keywords: motor, BLDC, torque, speed, acceleration.

2021 ◽  
Vol 4 (1) ◽  
pp. 120
Author(s):  
Purnawan Purnawan ◽  
Casnan Casnan ◽  
Arief Kurniawan ◽  
Ananda Riski

The study's objectives were to: determine the type of Brushless Direct Current (BLDC) motor that is right for an electric car drive system with a capacity of one passenger, and Knowing the capacity of the BLDC motor used as an electric car drive system with a capacity of one passenger. This research uses Research and Development (R&D) level 1. The research subjects taken are students and lecturers of Vocational Education, Automotive Technology and Electrical Engineering, Ahmad Dahlan University, totalling eight students four lecturers. Ahmad Dahlan University " AL-QORNI " electric car is planned to use an electric motor type Brushless Direct Current (BLDC) with a capacity of 2000 watts which works with a voltage of 49 volts - 96 volts.


2014 ◽  
Vol 63 (1) ◽  
pp. 115-124 ◽  
Author(s):  
R. Caramia ◽  
R. Piotuch ◽  
R. Pałka

Abstract The paper presents a methodology for the optimization of a Brushless Direct Current motor (BLDC). In particular it is focused on multiobjective optimization using a genetic algorithm (GA) developed in Matlab/Optimization Toolbox coupled with Maxwell from ANSYS. Optimization process was divided into two steps. The aim of the first one was to maximize the RMS torque value and to minimize the mass. The second part of the optimization process was to minimize the cogging torque by selecting proper magnet angle. The paper presents the methodology and capabilities of scripting methods rather than specific optimization results for the applied geometry


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5267
Author(s):  
Smail Bazi ◽  
Redha Benzid ◽  
Yakoub Bazi ◽  
Mohamd Mahmoud Al Rahhal

Firefly Algorithm (FA) is a recent swarm intelligence first introduced by X.S. Yang in 2008. It has been widely used to solve several optimization problems. Since then, many research works were elaborated presenting modified versions intending to improve performances of the standard one. Consequently, this article aims to present an accelerated variant compared to the original Algorithm. Through the resolving of some benchmark functions to reach optimal solution, obtained results demonstrate the superiority of the suggested alternative, so-called Fast Firefly Algorithm (FFA), when faced with those of the standard FA in term of convergence fastness to the global solution according to an almost similar precision. Additionally, a successful application for the control of a brushless direct current electric motor (BLDC) motor by optimization of the Proportional Integral (PI) regulator parameters is given. These parameters are optimized by the FFA, FA, GA, PSO and ABC algorithms using the IAE, ISE, ITAE and ISTE performance criteria.


2019 ◽  
Vol 8 (4) ◽  
pp. 8994-8997

This paper represents the design and analysis of the Brushless Direct current motor. The usage of brushless motor is increasing day by day in that the design aspects are more important and the customer satisfaction is important. Based upon the rating the needs brushless DC motor is designed. The design has been done with the controllers and the real time applications such as EV, the controllers had been used to get the proper design. The results are analyzed using the MATLAB simulink software. Keywords : Brushless Direct Current Motor(BLDC),


Sign in / Sign up

Export Citation Format

Share Document