scholarly journals SCHEDULLING MODEL OF REPLENISHMENT AT SEA FOR STRICKING FORCE UNIT IN SEA OPERATION USING GENETIC ALGORITHM

JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Aris Tri Ika R ◽  
Benny Sukandari ◽  
Okol Sri Suharyo ◽  
Ayip Rivai Prabowo

Navy as a marine core in the defense force is responsible for providing security for realizing stability and security of the country.  At any time there was an invasion of other countries past through sea,  TNI AL must be able to break the enemy resistance line through a sea operation to obtain the sea superiority. But this time the endurance of Striking force Unit at only 7-10 days and required replenishment at sea to maximize the presence in the theater of operations to meet a demand of the logistics: HSD, Freshwater, Lubricating Oil, foodstuffs and amonisi. For the optimal replenishment at sea required scheduling model supporting unit to get the minimum time striking force unit was on node rendezvous. Replenishment at sea scheduling model for striking force unit refers to the problems Vehicle routing problem with time windows using Genetic Algorithms. These wheelbase used is roulette for reproduction, crossover, and mutation of genes. Genetic algorithms have obtained optimum results in the shortest route provisioning scenario uses one supporting unit with a total time of 6.89 days. In scenario two supporting unit with minimal time is 4.97 days. In the scenario, the changing of the node replenishment Genetic Algorithm also get optimal time is 4.97 days with two supporting units. Research continued by changing the parameters of the population, the probability of crossover and mutation that can affect the performance of the genetic algorithm to obtain the solution. Keywords: Genetic Algorithm, Model Scheduling, Striking Force unit

2014 ◽  
pp. 72-80
Author(s):  
Vladimir Vacic ◽  
Tarek M. Sobh

The topic of this paper is a Genetic Algorithm solution to the Vehicle Routing Problem with Time Windows, a variant of one of the most common problems in contemporary operations research. The paper will introduce the problem starting with more general Traveling Salesman and Vehicle Routing problems and present some of the prevailing strategies for solving them, focusing on Genetic Algorithms. At the end, it will summarize the Genetic Algorithm solution proposed by K.Q. Zhu which was used in the programming part of the project.


Author(s):  
Adyan Nur Alfiyatin ◽  
Wayan Firdaus Mahmudy ◽  
Yusuf Priyo Anggodo

<span lang="EN-US">Distribution is an important aspect of industrial activity to serve customers on time with minimal operational cost. Therefore, it is necessary to design a quick and accurate distribution route. One of them can be design travel distribution route using the k-means method and genetic algorithms. This research will combine k-means method and genetic algorithm to solve VRPTW problem. K-means can do clustering properly and genetic algorithms can optimize the route. The proposed genetic algorithm employs initialize chromosome from the result of k-means and using replacement method of selection. Based on the comparison between genetic algorithm and hybrid k-means genetic algorithm proves that k-means genetic algorithm is a suitable combination method with relative low computation time, are the comparison between 2700 and 3900 seconds.</span>


Author(s):  
Kaixian Gao ◽  
Guohua Yang ◽  
Xiaobo Sun

With the rapid development of the logistics industry, the demand of customer become higher and higher. The timeliness of distribution becomes one of the important factors that directly affect the profit and customer satisfaction of the enterprise. If the distribution route is planned rationally, the cost can be greatly reduced and the customer satisfaction can be improved. Aiming at the routing problem of A company’s vehicle distribution link, we establish mathematical models based on theory and practice. According to the characteristics of the model, genetic algorithm is selected as the algorithm of path optimization. At the same time, we simulate the actual situation of a company, and use genetic algorithm to plan the calculus. By contrast, the genetic algorithm suitable for solving complex optimization problems, the practicability of genetic algorithm in this design is highlighted. It solves the problem of unreasonable transportation of A company, so as to get faster efficiency and lower cost.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Chenghua Shi ◽  
Tonglei Li ◽  
Yu Bai ◽  
Fei Zhao

We present the vehicle routing problem with potential demands and time windows (VRP-PDTW), which is a variation of the classical VRP. A homogenous fleet of vehicles originated in a central depot serves customers with soft time windows and deliveries from/to their locations, and split delivery is considered. Also, besides the initial demand in the order contract, the potential demand caused by conformity consuming behavior is also integrated and modeled in our problem. The objective of minimizing the cost traveled by the vehicles and penalized cost due to violating time windows is then constructed. We propose a heuristics-based parthenogenetic algorithm (HPGA) for successfully solving optimal solutions to the problem, in which heuristics is introduced to generate the initial solution. Computational experiments are reported for instances and the proposed algorithm is compared with genetic algorithm (GA) and heuristics-based genetic algorithm (HGA) from the literature. The comparison results show that our algorithm is quite competitive by considering the quality of solutions and computation time.


2020 ◽  
Vol 12 (19) ◽  
pp. 7934
Author(s):  
Anqi Zhu ◽  
Bei Bian ◽  
Yiping Jiang ◽  
Jiaxiang Hu

Agriproducts have the characteristics of short lifespan and quality decay due to the maturity factor. With the development of e-commerce, high timelines and quality have become a new pursuit for agriproduct online retailing. To satisfy the new demands of customers, reducing the time from receiving orders to distribution and improving agriproduct quality are significantly needed advancements. In this study, we focus on the joint optimization of the fulfillment of online tomato orders that integrates picking and distribution simultaneously within the context of the farm-to-door model. A tomato maturity model with a firmness indicator is proposed firstly. Then, we incorporate the tomato maturity model function into the integrated picking and distribution schedule and formulate a multiple-vehicle routing problem with time windows. Next, to solve the model, an improved genetic algorithm (the sweep-adaptive genetic algorithm, S-AGA) is addressed. Finally, we prove the validity of the proposed model and the superiority of S-AGA with different numerical experiments. The results show that significant improvements are obtained in the overall tomato supply chain efficiency and quality. For instance, tomato quality and customer satisfaction increased by 5% when considering the joint optimization, and the order processing speed increased over 90% compared with traditional GA. This study could provide scientific tomato picking and distribution scheduling to satisfy the multiple requirements of consumers and improve agricultural and logistics sustainability.


Author(s):  
Marco Antonio Cruz-Chávez ◽  
Abelardo Rodríguez-León ◽  
Rafael Rivera-López ◽  
Fredy Juárez-Pérez ◽  
Carmen Peralta-Abarca ◽  
...  

Around the world there have recently been new and more powerful computing platforms created that can be used to work with computer science problems. Some of these problems that are dealt with are real problems of the industry; most are classified by complexity theory as hard problems. One such problem is the vehicle routing problem with time windows (VRPTW). The computational Grid is a platform which has recently ventured into the treatment of hard problems to find the best solution for these. This chapter presents a genetic algorithm for the vehicle routing problem with time windows. The algorithm iteratively applies a mutation operator, first of the intelligent type and second of the restricting type. The algorithm takes advantage of Grid computing to increase the exploration and exploitation of the solution space of the problem. The Grid performance is analyzed for a genetic algorithm and a measurement of the latencies that affect the algorithm is studied. The convenience of applying this new computing platform to the execution of algorithms specially designed for Grid computing is presented.


Sign in / Sign up

Export Citation Format

Share Document