Extension Ratio of the Depth of Field for Wavefront Coding Imaging System

2008 ◽  
Vol 28 (5) ◽  
pp. 870-875 ◽  
Author(s):  
潘超 Pan Chao ◽  
陈家璧 Chen Jiabi ◽  
张荣福 Zhang Rongfu ◽  
庄松林 Zhuang Songlin
2019 ◽  
Vol 436 ◽  
pp. 232-238
Author(s):  
Xutao Mo ◽  
Tao Zhang ◽  
Bin Wang ◽  
Xianshan Huang ◽  
Cuifang Kuang ◽  
...  

2008 ◽  
Author(s):  
Chao Pan ◽  
Jiabi Chen ◽  
Dawei Zhang ◽  
Songlin Zhuang

2019 ◽  
Vol 125 ◽  
pp. 597-603 ◽  
Author(s):  
Liquan Dong ◽  
Haoyuan Du ◽  
Ming Liu ◽  
Yuejin Zhao ◽  
Xueyan Li ◽  
...  

Author(s):  
Daniel L. Barton ◽  
Jeremy A. Walraven ◽  
Edward R. Dowski ◽  
Rainer Danz ◽  
Andreas Faulstich ◽  
...  

Abstract A new imaging technique called Wavefront Coding allows real-time imaging of three-dimensional structures over a very large depth. Wavefront Coding systems combine aspheric optics and signal processing to achieve depth of fields ten or more times greater than that possible with traditional imaging systems. Understanding the relationships between traditional and modern imaging system design through Wavefront Coding is very challenging. In high performance imaging systems nearly all aspects of the system that could reduce image quality are carefully controlled. Modifying the optics and using signal processing can increase the amount of image information that can be recorded by microscopes. For a number of applications this increase in information can allow a single image to be used where a number of images taken at different object planes had been used before. Having very large depth of field and real-time imaging capability means that very deep structures such as surface micromachined MEMS can be clearly imaged with one image, greatly simplifying defect and failure analysis.


Author(s):  
Nhu

Wavefront coding technique includes a phase mask of asymmetric phase mask kind in the pupil plane to extend the depth of field of an imaging system and the digital processing step to obtain the restored final high-quality image. However, the main drawback of wavefront coding technique is image artifacts on the restored final images. In this paper, we proposed a parameter blind-deconvolution method based on maximizing of the variance of the histogram of restored final images that enables to obtain the restored final image with artifact-free over a large range of defocus.


2008 ◽  
Vol 16 (17) ◽  
pp. 13364 ◽  
Author(s):  
Chao Pan ◽  
Jiabi Chen ◽  
Rongfu Zhang ◽  
Sonlin Zhuang

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4011
Author(s):  
Chuanwei Yao ◽  
Yibing Shen

The image deconvolution technique can recover potential sharp images from blurred images affected by aberrations. Obtaining the point spread function (PSF) of the imaging system accurately is a prerequisite for robust deconvolution. In this paper, a computational imaging method based on wavefront coding is proposed to reconstruct the wavefront aberration of a photographic system. Firstly, a group of images affected by local aberration is obtained by applying wavefront coding on the optical system’s spectral plane. Then, the PSF is recovered accurately by pupil function synthesis, and finally, the aberration-affected images are recovered by image deconvolution. After aberration correction, the image’s coefficient of variation and mean relative deviation are improved by 60% and 30%, respectively, and the image can reach the limit of resolution of the sensor, as proved by the resolution test board. Meanwhile, the method’s robust anti-noise capability is confirmed through simulation experiments. Through the conversion of the complexity of optical design to a post-processing algorithm, this method offers an economical and efficient strategy for obtaining high-resolution and high-quality images using a simple large-field lens.


2018 ◽  
Vol 89 (10) ◽  
pp. 103101 ◽  
Author(s):  
Hongbo Xie ◽  
Lirong He ◽  
Lei Yang ◽  
Chensheng Mao ◽  
Meng Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document