Detection Probability Model of Single-Photon Laser Altimetry and Its Range Accuracy

2016 ◽  
Vol 43 (11) ◽  
pp. 1110001
Author(s):  
黄 科 Huang Ke ◽  
李 松 Li Song ◽  
马 跃 Ma Yue ◽  
周 辉 Zhou Hui ◽  
易 洪 Yi Hong ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 436 ◽  
Author(s):  
Chin-An Hsieh ◽  
Chia-Ming Tsai ◽  
Bing-Yue Tsui ◽  
Bo-Jen Hsiao ◽  
Sheng-Di Lin

Single-photon avalanche diodes (SPADs) in complementary metal-oxide-semiconductor (CMOS) technology have excellent timing resolution and are capable to detect single photons. The most important indicator for its sensitivity, photon-detection probability (PDP), defines the probability of a successful detection for a single incident photon. To optimize PDP is a cost- and time-consuming task due to the complicated and expensive CMOS process. In this work, we have developed a simulation procedure to predict the PDP without any fitting parameter. With the given process parameters, our method combines the process, the electrical, and the optical simulations in commercially available software and the calculation of breakdown trigger probability. The simulation results have been compared with the experimental data conducted in an 800-nm CMOS technology and obtained a good consistence at the wavelength longer than 600 nm. The possible reasons for the disagreement at the short wavelength have been discussed. Our work provides an effective way to optimize the PDP of a SPAD prior to its fabrication.


2013 ◽  
Vol 401-403 ◽  
pp. 1204-1207 ◽  
Author(s):  
She Xiang Ma ◽  
Jin Sun ◽  
Yong Qiang Guan

Aiming at the small coverage of shore-based AIS and complicated structure of space-based AIS, airborne AIS is chosen to increase the coverage effectively. This paper gives the calculation method of the maximum transmission distance, and then establishes the detection probability model of the airborne AIS. The relationship between reporting interval, ship densities and detection probabilities is established. At the end of the paper, simulation results of the model are given.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5860
Author(s):  
Aymeric Panglosse ◽  
Philippe Martin-Gonthier ◽  
Olivier Marcelot ◽  
Cédric Virmontois ◽  
Olivier Saint-Pé ◽  
...  

Single-Photon Avalanche Diodes (SPAD) in Complementary Metal-Oxide Semiconductor (CMOS) technology are potential candidates for future “Light Detection and Ranging” (Lidar) space systems. Among the SPAD performance parameters, the Photon Detection Probability (PDP) is one of the principal parameters. Indeed, this parameter is used to evaluate the SPAD sensitivity, which directly affects the laser power or the telescope diameter of space-borne Lidars. In this work, we developed a model and a simulation method to predict accurately the PDP of CMOS SPAD, based on a combination of measurements to acquire the CMOS process doping profile, Technology Computer-Aided Design (TCAD) simulations, and a Matlab routine. We compare our simulation results with a SPAD designed and processed in CMOS 180 nm technology. Our results show good agreement between PDP predictions and measurements, with a mean error around 18.5%, for wavelength between 450 and 950 nm and for a typical range of excess voltages between 15 and 30% of the breakdown voltage. Due to our SPAD architecture, the high field region is not entirely insulated from the substrate, a comparison between simulations performed with and without the substrate contribution indicates that PDP can be simulated without this latter with a moderate loss of precision, around 4.5 percentage points.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7105
Author(s):  
Gobinath Jegannathan ◽  
Thomas Van den Dries ◽  
Maarten Kuijk

Single-photon avalanche diodes (SPADs) fabricated in conventional CMOS processes typically have limited near infra-red (NIR) sensitivity. This is the consequence of isolating the SPADs in a lowly-doped deep N-type well. In this work, we present a second improved version of the “current-assisted” single-photon avalanche diode, fabricated in a conventional 350 nm CMOS process, having good NIR sensitivity owing to 14 μm thick epilayer for photon absorption. The presented device has a photon absorption area of 30 × 30 µm2, with a much smaller central active area for avalanche multiplication. The photo-electrons generated in the absorption area are guided swiftly towards the central area with a drift field created by the “current-assistance” principle. The central active avalanche area has a cylindrical p-n junction as opposed to the square geometry from the previous iteration. The presented device shows improved performance in all aspects, most notably in photon detection probability. The p-n junction capacitance is estimated to be ~1 fF and on-chip passive quenching with source followers is employed to conserve the small capacitance for bringing monitoring signals off-chip. Device physics simulations are presented along with measured dark count rate (DCR), timing jitter, after-pulsing probability (APP) and photon detection probability (PDP). The presented device has a peak PDP of 22.2% at a wavelength of 600 nm and a timing jitter of 220 ps at a wavelength of 750 nm.


2009 ◽  
Author(s):  
Leye Aina ◽  
Ayub Fathimulla ◽  
Harry Hier ◽  
Mark Lecates ◽  
Sachi Babu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document