2D reconstruction of combustion flow field temperature based on multiple absorption lines

2019 ◽  
Vol 48 (3) ◽  
pp. 306004
Author(s):  
宋俊玲 Song Junling ◽  
饶 伟 Rao Wei ◽  
王广宇 Wang Guangyu ◽  
辛明原 Xin Mingyuan
2019 ◽  
Vol 46 (7) ◽  
pp. 0711001
Author(s):  
张步强 Buqiang Zhang ◽  
许振宇 Zhenyu Xu ◽  
刘建国 Jianguo Liu ◽  
夏晖晖 Huihui Xia ◽  
聂伟 Wei Nie ◽  
...  

AIP Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 055022 ◽  
Author(s):  
Min Yao ◽  
Yueqi Zhang ◽  
Min Zhao ◽  
Ruipeng Guo ◽  
Jun Xu

2020 ◽  
Vol 11 (2) ◽  
pp. 29
Author(s):  
Haojie Xue ◽  
Di Tan ◽  
Shuaishuai Liu ◽  
Meng Yuan ◽  
Chunming Zhao

In this paper, a 15 KW in-wheel motor (IWM) is taken as the research object, and the coupling factors among the electromagnetic field, temperature field and flow field are analyzed, and the strong and weak coupling factors between the three fields are clarified, and by identifying the strong and weak coupling factors between the three fields, a three-field coupling analysis model for IWM with appropriate complexity is established, and the validity of the model is verified. In a certain driving condition, the electromagnetic field, temperature field and flow field characteristics of IWM are analyzed with the multi-field coupling model. The result shows that, after the IWM runs 8440 s under driving conditions, in this paper, the IWM electromagnetic torque of the rated working condition is 134.2 Nm, and IWM the electromagnetic torque of the peak working condition is 451.36 Nm, and the power requirement of the motor can be guaranteed. The highest temperature of the IWM is 150 °C, which does not exceed the insulation grade requirements of the motor (155 °C), the highest temperature of the permanent magnet (PM) is 65.6 °C, and it does not exceed the highest operating temperature of the PM, and ensures the accurate calculation of components loss and the temperature of the motor. It can be found, through research, that the electromagnetic torque difference between unidirectional coupling and bidirectional coupling is 3.2%, the maximum temperature difference is 7.98% in the three-field coupling analysis of IWM under rated working conditions. Therefore, it is necessary to consider the influence of coupling factors on the properties of motor materials when analyzing the electromagnetic field, temperature field and flow field of IWM; it also provides some reference value for the simulation analysis of IWM in the future.


Author(s):  
Zhibo Zhang ◽  
Hongtao Zheng ◽  
Honglei Yang ◽  
Ren Yang ◽  
Qian Liu ◽  
...  

Lean blowout (LBO) plays an important role in combustor performance. A new method named Feature-Section-criterion (FSC) for predicting the LBO of annular combustor has been put forward and expounded in this paper. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The process of blowout and effects of flow split among swirlers and primary holes have been researched by using of FSC. The result shows that the predictions of FSC are in agreement with corresponding experimental data. So this method for predicting lean blowout is reliable and can be used for engineering applications.


2011 ◽  
Vol 50 (15) ◽  
pp. 2145 ◽  
Author(s):  
Yun-yun Chen ◽  
Yang Song ◽  
Zhen-hua Li ◽  
An-zhi He

Sign in / Sign up

Export Citation Format

Share Document