Spectral Pattern Recognition of Heavy Mineral Oil Using Support Vector Machine Modeling

2021 ◽  
Vol 58 (6) ◽  
pp. 0630001
Author(s):  
侯伟 Hou Wei ◽  
王继芬 Wang Jifen ◽  
何欣龙 He Xinlong
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Cen Lim ◽  
Yee Ying Lim ◽  
Yee Siew Choong

Abstract B-cell epitope will be recognized and attached to the surface of receptors in B-lymphocytes to trigger immune response, thus are the vital elements in the field of epitope-based vaccine design, antibody production and therapeutic development. However, the experimental approaches in mapping epitopes are time consuming and costly. Computational prediction could offer an unbiased preliminary selection to reduce the number of epitopes for experimental validation. The deposited B-cell epitopes in the databases are those with experimentally determined positive/negative peptides and some are ambiguous resulted from different experimental methods. Prior to the development of B-cell epitope prediction module, the available dataset need to be handled with care. In this work, we first pre-processed the B-cell epitope dataset prior to B-cell epitopes prediction based on pattern recognition using support vector machine (SVM). By using only the absolute epitopes and non-epitopes, the datasets were classified into five categories of pathogen and worked on the 6-mers peptide sequences. The pre-processing of the datasets have improved the B-cell epitope prediction performance up to 99.1 % accuracy and showed significant improvement in cross validation results. It could be useful when incorporated with physicochemical propensity ranking in the future for the development of B-cell epitope prediction module.


2018 ◽  
Vol 159 ◽  
pp. 02048
Author(s):  
Rahayu ◽  
G.T. Anuraga ◽  
H. Prasetia ◽  
Umar Khayam

Partial Discharge (PD) is one of the causes of insulation deteriorisation mode and impacts on the reliability of high voltage equipment. Therefore, PD measurement is used for diagnostic technique of high voltage equipment. Diagnostic output of high voltage equipment contain information about PD type, PD cause, PD location and PD severity. after identification, a proper preventive maintenance pattern can be performed. Therefore PD pattern recognition system is very important on PD diagnostic system to recognize the PD pattern and determine the level of hazard that occurs in specimen object or high voltage equipment‥ In this paper, PD pattern recognition system is designed with fractal geometry approach and support vector machine (SVM) algorithm. The coding and programming of graphical user interface of the application is done. Each PD type and hazard level on various insulating materials (solid, liquid and gas) have the dimensions of the fractal and the lacunarity. The type of PD (void, corona) and its danger level (bad, fair and good) can be identified with the support vector machine (SVM)


Sign in / Sign up

Export Citation Format

Share Document