Feature Selection Algorithm Application in Near-Infrared Spectroscopy Classification Based on Binary Search Combined with Random Forest Pruning

2017 ◽  
Vol 54 (10) ◽  
pp. 103001
Author(s):  
刘 明 Liu Ming ◽  
李忠任 Li Zhongren ◽  
张海涛 Zhang Haitao ◽  
于春霞 Yu Chunxia ◽  
唐兴宏 Tang Xinghong ◽  
...  
2021 ◽  
pp. 1-15
Author(s):  
Zhaozhao Xu ◽  
Derong Shen ◽  
Yue Kou ◽  
Tiezheng Nie

Due to high-dimensional feature and strong correlation of features, the classification accuracy of medical data is not as good enough as expected. feature selection is a common algorithm to solve this problem, and selects effective features by reducing the dimensionality of high-dimensional data. However, traditional feature selection algorithms have the blindness of threshold setting and the search algorithms are liable to fall into a local optimal solution. Based on it, this paper proposes a hybrid feature selection algorithm combining ReliefF and Particle swarm optimization. The algorithm is mainly divided into three parts: Firstly, the ReliefF is used to calculate the feature weight, and the features are ranked by the weight. Then ranking feature is grouped according to the density equalization, where the density of features in each group is the same. Finally, the Particle Swarm Optimization algorithm is used to search the ranking feature groups, and the feature selection is performed according to a new fitness function. Experimental results show that the random forest has the highest classification accuracy on the features selected. More importantly, it has the least number of features. In addition, experimental results on 2 medical datasets show that the average accuracy of random forest reaches 90.20%, which proves that the hybrid algorithm has a certain application value.


2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.


2012 ◽  
Vol 12 (04) ◽  
pp. 1240013 ◽  
Author(s):  
SAMANTA ROSATI ◽  
GABRIELLA BALESTRA ◽  
FILIPPO MOLINARI

Diabetic patients might present peripheral microcirculation impairment and might benefit from physical training. Thirty-nine diabetic patients underwent the monitoring of the tibialis anterior muscle oxygenation during a series of voluntary ankle flexo-extensions by near-infrared spectroscopy (NIRS). NIRS signals were acquired before and after training protocols. Sixteen control subjects were tested with the same protocol. Time-frequency distributions of the Cohen's class were used to process the NIRS signals relative to the concentration changes of oxygenated and reduced hemoglobin. A total of 24 variables were measured for each subject and the most discriminative were selected by using four feature selection algorithms: QuickReduct, Genetic Rough-Set Attribute Reduction, Ant Rough-Set Attribute Reduction, and traditional ANOVA. Artificial neural networks were used to validate the discriminative power of the selected features. Results showed that different algorithms extracted different sets of variables, but all the combinations were discriminative. The best classification accuracy was about 70%. The oxygenation variables were selected when comparing controls to diabetic patients or diabetic patients before and after training. This preliminary study showed the importance of feature selection techniques in NIRS assessment of diabetic peripheral vascular impairment.


Sign in / Sign up

Export Citation Format

Share Document