Application of visible and near-infrared spectroscopy for evaluation of ewes milk with different feeds

2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.

Agroteknika ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 67-74
Author(s):  
Yuda Hadiwijaya ◽  
Kusumiyati Kusumiyati ◽  
Agus Arip Munawar

Kadar air merupakan salah satu atribut kualitas yang penting pada komoditas hortikultura. Penetapan kadar air buah melon dengan metode konvensional memakan waktu yang lama dan perlu merusak sampel buah. Penelitian ini bertujuan untuk memprediksi kadar air buah melon golden menggunakan teknologi visible-near infrared spectroscopy (Vis-NIRS). Metode koreksi spektra orthogonal signal correction (OSC) diterapkan pada spektra original untuk meningkatkan kehandalan model kalibrasi. Partial least squares regression (PLSR) digunakan sebagai metode pendekatan regresi untuk mengekstraksi data spektra Vis-NIRS. Hasil penelitian membuktikan bahwa Vis-NIRS dapat diandalkan untuk memprediksi kadar air buah melon golden. Metode koreksi spektra OSC mampu memperkecil jumlah principal component (PC) pada spektra original. Linieritas pada model kalibrasi menggunakan spektra OSC tercatat memperoleh nilai tertinggi sebesar 0,92. Ratio of performance to deviation (RPD) pada spektra OSC menampilkan nilai tertinggi pula yaitu 3,63. Model kalibrasi yang diperoleh pada penelitian ini dapat ditransfer ke dalam spektrometer Vis-NIRS untuk prediksi kadar air melon golden secara cepat dan simultan.


2019 ◽  
Vol 27 (4) ◽  
pp. 278-285 ◽  
Author(s):  
Yonghao Xu ◽  
Li Liu ◽  
Meizhen Huang ◽  
Ning Xu

A near infrared spectroscopy method combined with a random forest pruning algorithm based on margin optimization and principal component analysis (PCA-MORFP) was proposed to identify the origin of Angelica dahurica. One hundred and ninety-six samples of A. dahurica were collected from four original cultivation regions; their NIR diffuse reflectance spectra were measured by a custom-built near infrared spectrometer which works in the range of 900–1700 nm with a resolution (full width at half maximum [FWHM]) of 4 nm. Combinations of Savitzky–Golay smoothing, standard normal variates, and first derivative transformations were used to preprocess the spectral data. Then the PCA-MORFP classification model was constructed. Meanwhile, the was compared with other classifying approaches, including: principal component analysis-K-nearest neighbor, principal component analysis-support vector machine, and principal component analysis-random forest. Experimental results showed that the PCA-MORFP achieved the best prediction performance over other compared methods. The recognition rates of the PCA-MORFP model were up to 100% for the calibration set and 98.2% for the prediction set, respectively. The method provides a rapid and convenient detection technique for the origin identification of A. dahurica.


2013 ◽  
Vol 834-836 ◽  
pp. 935-938
Author(s):  
Lian Shun Zhang ◽  
Chao Guo ◽  
Bao Quan Wang

In this paper, the liquor brands were identified based on the near infrared spectroscopy method and the principal component analysis. 60 samples of 6 different brands liquor were measured by the spectrometer of USB4000. Then, in order to eliminate the noise caused by the external factors, the smoothing method and the multiplicative scatter correction method were used. After the preprocessing, we got the revised spectra of the 60 samples. The difference of the spectrum shape of different brands is not much enough to classify them. So the principal component analysis was applied for further analysis. The results showed that the first two principal components variance contribution rate had reached 99.06%, which can effectively represent the information of the spectrums after preprocessing. From the scatter plot of the two principal components, the 6 different brands of liquor were identified more accurate and easier than the spectra curves.


2018 ◽  
Vol 11 (7) ◽  
pp. e201700365 ◽  
Author(s):  
Raphael Henn ◽  
Christian G. Kirchler ◽  
Zora L. Schirmeister ◽  
Andreas Roth ◽  
Werner Mäntele ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 1464-1468
Author(s):  
Xiu Hua Liu ◽  
Xiao Ting Li ◽  
Jing Wang ◽  
Rui Ying Li ◽  
Guang Chen Wu ◽  
...  

In order to identify the authentic Pingli Gynostemma, a geographical indication products, diffuse reflectance spectroscopy of Gynostemma came from eight different origins were collected by the Fourier near-infrared spectrometer. The spectroscopy was analyzed with Chemometrics method, and the spectroscopy was pretreated by the vector normalization condition. The range of spectra was 4800-10096 cm-1. The Calibration models of Gynostemma were established by the principal component analysis, qualification testing and cluster analysis, respectively, and each model was verified. The results show that the optimal model established by the principal component analysis, qualification testing and cluster analysis can effectively identify authentic Pingli Gynostemma, and accuracy rate was 100%. In conclusion, Pingli Gynostemma can be identified accurately and quickly by the near-infrared spectroscopy technique.


2002 ◽  
Vol 82 (4) ◽  
pp. 413-422 ◽  
Author(s):  
P D Martin ◽  
D F Malley ◽  
G. Manning ◽  
L. Fuller

This study explored the use of near-infrared spectroscopy (NIRS) for the rapid analysis of organic C (Corg) and organic N (Norg) in the A horizon of soil within a single field. Soil was sampled throughout a field in Manitoba, Canada to capture soil variability associated with topography. The soil samples were oven-dried and treated with acid to remove carbonates, after which C and N were determined by dry combustion. In this study, portions of the dried soil samples not treated with acid were scanned with a near-infrared scanning spectrophotometer between 1100 and 2500 nm. Correlating the spectral and the chemical analytical data using multiple linear regression or principal component analysis/partial least squares regression gave useful correlations for Corg. Over the range of 0–40 mg g-1 Corg, NIR-predicted values explained 75–78% of the variance in the chemical results. Results were improved to 80% for calibrations developed for the 0–20 mg g-1 organic C range. Useful results were not obtained for Norg although the literature shows that total N in soil is predictable using NIRS. It is likely that the acid treatment altered the composition of the samples in an inconsistent manner such that the chemically analyzed samples and those scanned by NIRS were different from each other in Norg concentration or composition. Extrapolation of these Corg results to the landscape scale implies that NIRS has potential to be a suitable method for mapping C for the purposes of monitoring C sequestration. Key words: Near-infrared spectroscopy, soil, carbon, nitrogen, topography, soil monitoring


Sign in / Sign up

Export Citation Format

Share Document